Abstract

A new method of determining objectively the amount of scattered light in an optical system has been developed. It is based on measuring the degree of polarization of the light in images formed after a double pass through the system. A dual apparatus composed of a modified double-pass imaging polarimeter and a wave-front sensor was used to measure polarization properties and aberrations of the system under test. We studied the accuracy of the procedure in a system that included a lanthanum-modified lead zirconate titanate (PLZT) ceramic plate able to generate variable amounts of scattered light as a function of the applied voltage. Changes in the voltage applied to the ceramics plate modified significantly the scattering contribution while hardly altering the wave-front aberration. The degree of polarization was well correlated with the level of scattering in the system as determined by direct-intensity measurements at the tails of the double-pass images. This indicates that this polarimetric parameter provides accurate relative estimates of the amount of scattering generated in a system. The technique can be used in a number of applications, for example, to determine objectively the amount of scattered light in the human eye.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. J. Allen, J. J. Vos, “Ocular scattered light and visual performance as a function of age,” Am. J. Optom. Physiol. Opt. 44, 717–727 (1967).
    [CrossRef]
  2. J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
    [CrossRef]
  3. G. Rousset, “Wavefront sensing,” in Adaptative Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Kluwer Academic, Dordrecht, the Netherlands, 1994), Vol. 423, pp. 115–138.
  4. J. Liang, B. Grimm, S. Goeltz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  5. I. Iglesias, E. Berrio, P. Artal, “Estimates of the ocular wave aberration from pairs of double pass retinal images,” J. Opt. Soc. Am. A 15, 2466–2476 (1998).
    [CrossRef]
  6. W. S. Bickel, W. M. Bailey, “Stokes, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).
    [CrossRef]
  7. F. Delplanke, “Automated high-speed Mueller matrix scatterometer,” Appl. Opt. 36, 5388–5395 (1997).
    [CrossRef]
  8. A. H. Hielscher, A. A. Eick, J. R. Mourant, D. Shen, J. P. Freyer, I. J. Bigio, “Diffuse backscattering Mueller matrices of highly scattering media,” Opt. Express 1, 441–453 (1997).
    [CrossRef] [PubMed]
  9. B. D. Cameron, M. J. Rakovic, M. Mehrübeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, G. L. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485–487 (1998).
    [CrossRef]
  10. R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.
  11. J. Santamarı́a, P. Artal, J. Bescós, “Determination of the point-spread function of human eyes using a hybrid optical-digital method,” J. Opt. Soc. Am. A 4, 1109–1114 (1987).
    [CrossRef] [PubMed]
  12. P. Artal, I. Iglesias, N. López-Gil, P. G. Green, “Double-pass measurements of the retinal-image quality with unequal entrance and exit pupil sizes and the reversibility of the eye’s optical system,” J. Opt. Soc. Am. A 12, 2358–2366 (1995).
    [CrossRef]
  13. M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
    [CrossRef]
  14. J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
    [CrossRef]
  15. P. M. Prieto, F. Vargas-Martı́n, S. Goelz, P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000).
    [CrossRef]
  16. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976).
    [CrossRef]
  17. J. M. Bueno, J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
    [CrossRef] [PubMed]
  18. N. Hubbin, L. Noethe, “What is adaptive optics?” Science 262, 1345–1484 (1993).
  19. E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
    [CrossRef]
  20. G. Indebetouw, P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gatings in spatiotemporal digital holography,” Opt. Lett. 25, 212–214 (2000).
    [CrossRef]
  21. J. F. de Boer, T. E. Milner, M. J. C. Van Gemer, J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  22. M. P. Rowe, E. N. Pugh, J. S. Tyo, N. Engheta, “Polarization-difference imaging: a biologically inspired technique for imaging in scattering media,” Opt. Lett. 20, 608–610 (1995).
    [CrossRef] [PubMed]

2002 (1)

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

2001 (2)

J. M. Bueno, J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

E. J. Fernández, I. Iglesias, P. Artal, “Closed-loop adaptive optics in the human eye,” Opt. Lett. 26, 746–748 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (2)

1997 (3)

1995 (2)

1994 (1)

1993 (1)

N. Hubbin, L. Noethe, “What is adaptive optics?” Science 262, 1345–1484 (1993).

1990 (1)

J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

1987 (1)

1985 (1)

W. S. Bickel, W. M. Bailey, “Stokes, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).
[CrossRef]

1976 (1)

1967 (1)

M. J. Allen, J. J. Vos, “Ocular scattered light and visual performance as a function of age,” Am. J. Optom. Physiol. Opt. 44, 717–727 (1967).
[CrossRef]

Allen, M. J.

M. J. Allen, J. J. Vos, “Ocular scattered light and visual performance as a function of age,” Am. J. Optom. Physiol. Opt. 44, 717–727 (1967).
[CrossRef]

Andersson-Engels, S.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Artal, P.

Bailey, W. M.

W. S. Bickel, W. M. Bailey, “Stokes, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).
[CrossRef]

Berrio, E.

Bescós, J.

Bickel, W. S.

W. S. Bickel, W. M. Bailey, “Stokes, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).
[CrossRef]

Bigio, I. J.

Bille, J. F.

Bueno, J. M.

J. M. Bueno, J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

J. M. Bueno, P. Artal, “Double-pass imaging polarimetry in the human eye,” Opt. Lett. 24, 64–66 (1999).
[CrossRef]

Cameron, B. D.

Chipman, R. A.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.

Coté, G. L.

de Boer, J. F.

de Jong, P. T.

J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

de Waard, P. W.

J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Delplanke, F.

Eick, A. A.

Engheta, N.

Fernández, E. J.

Freyer, J. P.

Goeltz, S.

Goelz, S.

Green, P. G.

Grimm, B.

Hielscher, A. H.

Hubbin, N.

N. Hubbin, L. Noethe, “What is adaptive optics?” Science 262, 1345–1484 (1993).

Iglesias, I.

Ijspeert, J. K.

J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Indebetouw, G.

Jaronski, J.

J. M. Bueno, J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

Kattawar, G. W.

Klysubun, P.

Lacis, I.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Liang, J.

López-Gil, N.

Mehrübeoglu, M.

Milner, T. E.

Mourant, J. R.

Nelson, J. S.

Noethe, L.

N. Hubbin, L. Noethe, “What is adaptive optics?” Science 262, 1345–1484 (1993).

Noll, R. J.

Ozolins, M.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Paeglis, R.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Prieto, P. M.

Pugh, E. N.

Rakovic, M. J.

Rastegar, S.

Rousset, G.

G. Rousset, “Wavefront sensing,” in Adaptative Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Kluwer Academic, Dordrecht, the Netherlands, 1994), Vol. 423, pp. 115–138.

Rowe, M. P.

Santamari´a, J.

Shen, D.

Sternberg, A.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Svanberg, S.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Swartling, J.

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

Tyo, J. S.

van der Berg, T. J.

J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Van Gemer, M. J. C.

Vargas-Marti´n, F.

Vos, J. J.

M. J. Allen, J. J. Vos, “Ocular scattered light and visual performance as a function of age,” Am. J. Optom. Physiol. Opt. 44, 717–727 (1967).
[CrossRef]

Wang, L. V.

Am. J. Optom. Physiol. Opt. (1)

M. J. Allen, J. J. Vos, “Ocular scattered light and visual performance as a function of age,” Am. J. Optom. Physiol. Opt. 44, 717–727 (1967).
[CrossRef]

Am. J. Phys. (1)

W. S. Bickel, W. M. Bailey, “Stokes, Mueller matrices, and polarized light scattering,” Am. J. Phys. 53, 468–478 (1985).
[CrossRef]

Appl. Opt. (1)

Ferroelectrics (1)

M. Ozolins, I. Lacis, R. Paeglis, A. Sternberg, S. Svanberg, S. Andersson-Engels, J. Swartling, “Electro-optic PLZT ceramics devices for vision science applications,” Ferroelectrics 273, 131–136 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (5)

Ophthalmic Physiol. Opt. (1)

J. M. Bueno, J. Jaronski, “Spatially resolved polarization properties for in vitro corneas,” Ophthalmic Physiol. Opt. 21, 384–392 (2001).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (6)

Science (1)

N. Hubbin, L. Noethe, “What is adaptive optics?” Science 262, 1345–1484 (1993).

Vision Res. (1)

J. K. Ijspeert, P. W. de Waard, T. J. van der Berg, P. T. de Jong, “The intraocular stray-light function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30, 699–707 (1990).
[CrossRef]

Other (2)

G. Rousset, “Wavefront sensing,” in Adaptative Optics for Astronomy, D. M. Alloin, J.-M. Mariotti, eds. (Kluwer Academic, Dordrecht, the Netherlands, 1994), Vol. 423, pp. 115–138.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, 2nd ed., M. Bass, ed. (McGraw-Hill, New York, 1995), Vol. 2, Chap. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental apparatus (see text for details).

Fig. 2
Fig. 2

Example of images of an object seen through the PLZT ceramic material for two different applied voltages: (a) 600 V, (b) 1100 V.

Fig. 3
Fig. 3

Mean values of Zernike coefficients (in micrometers) from the 2nd to the 5th order, corresponding to the WAs for four different scattering levels generated by the ceramic plate. The pupil diameter was 5 mm; error bars represent ±1 standard deviation.

Fig. 4
Fig. 4

WAs (upper panels) and associated PSFs (lower panels) for four scattering levels: (a) 0, (b) 600, (c) 800, and (d) 1000 V and a 5-mm pupil diameter. Each PSF subtends 25.8 arc min.

Fig. 5
Fig. 5

DP images recorded for the same values of voltage as in Fig. 4. The contrast of the images has been modified to improve the visualization of the tails. Each image subtends 2.9°.

Fig. 6
Fig. 6

Intensity radial profiles corresponding to the DP images as a function of voltage. The upper panel focuses on the region around the maximum peak of the images while the lower panel is scaled to show better the intensity at the tails of the images.

Fig. 7
Fig. 7

Parameter k as a function of the voltage applied to the ceramic plate. The solid line represents the fit to a quadratic function. The data for 0 V are also included (triangle).

Fig. 8
Fig. 8

Values of DOP at different locations along the DP image for different scattering levels.

Fig. 9
Fig. 9

DOP values at 2.6 arc min central part of the image versus parameter k for different scattering levels.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I1I2I3I4=12100-11-1001-1/4-3/43/21-1/43/43/2S0S1S2S3=MPSASOUT,
SOUT=S0S1S2S3=(MPSA)-1I1I2I3I4.
DOP=(S12+S22+S32)1/2S0.

Metrics