Abstract

A new method of determining objectively the amount of scattered light in an optical system has been developed. It is based on measuring the degree of polarization of the light in images formed after a double pass through the system. A dual apparatus composed of a modified double-pass imaging polarimeter and a wave-front sensor was used to measure polarization properties and aberrations of the system under test. We studied the accuracy of the procedure in a system that included a lanthanum-modified lead zirconate titanate (PLZT) ceramic plate able to generate variable amounts of scattered light as a function of the applied voltage. Changes in the voltage applied to the ceramics plate modified significantly the scattering contribution while hardly altering the wave-front aberration. The degree of polarization was well correlated with the level of scattering in the system as determined by direct-intensity measurements at the tails of the double-pass images. This indicates that this polarimetric parameter provides accurate relative estimates of the amount of scattering generated in a system. The technique can be used in a number of applications, for example, to determine objectively the amount of scattered light in the human eye.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription