Abstract

A solid immersion lens based on diffraction (dSIL) is proposed as an alternative to the conventional design based on refraction. A design analogous to a Fresnel zone plate is derived in accordance with the Huygens–Fresnel principle. Fabrication of a binary dSIL is achieved by electron-beam lithography and reactive-ion etching on LaSF35, with index n=2.014. Measurement of the point-spread function is performed with near-field optical microscopy. The results are in accord with the expected resolution enhancement of a factor n with respect to the diffraction limit.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [CrossRef]
  2. C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
    [CrossRef]
  3. Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
    [CrossRef]
  4. K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
    [CrossRef]
  5. T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. 38, 1777–1779 (1999).
    [CrossRef]
  6. M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
    [CrossRef]
  7. M. G. Moharam, T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am. 72, 1385–1392 (1982).
    [CrossRef]
  8. J. Bischoff, “Beitraege zur theoretischen und experimentellen Untersuchung der Lichtbeugung an mikrostrukturierten Mehrschichtsystemen,” Habilitation thesis (Ilmenau Technical University, Ilmenau, Germany, 2001).
  9. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).
    [CrossRef]

1999 (4)

Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. 38, 1777–1779 (1999).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

1998 (1)

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

1996 (1)

1990 (1)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

1982 (1)

Akiyama, H.

M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

Baba, M.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

Bischoff, J.

J. Bischoff, “Beitraege zur theoretischen und experimentellen Untersuchung der Lichtbeugung an mikrostrukturierten Mehrschichtsystemen,” Habilitation thesis (Ilmenau Technical University, Ilmenau, Germany, 2001).

Feke, G. D.

Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Gaylord, T. K.

Ghislain, L. P.

Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Goodnick, S.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Grober, R. D.

Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Gunther, A.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Kino, G. S.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Koyama, K.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

Li, L.

Mansfield, S. M.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

Menendez, J.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Milster, T. D.

T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. 38, 1777–1779 (1999).
[CrossRef]

Moharam, M. G.

Poweleit, C. D.

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Sasaki, T.

M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

Suemoto, T.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

Wu, Qiang

Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

Yoshita, M.

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

Appl. Phys. Lett. (4)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[CrossRef]

C. D. Poweleit, A. Gunther, S. Goodnick, J. Menendez, “Raman imaging of patterned silicon using a solid immersion lens,” Appl. Phys. Lett. 73, 2275–2277 (1998).
[CrossRef]

Qiang Wu, G. D. Feke, R. D. Grober, L. P. Ghislain, “Realization of numerical aperture 2.0 using a gallium phosphide solid immersion lens,” Appl. Phys. Lett. 75, 4064–4066 (1999).
[CrossRef]

K. Koyama, M. Yoshita, M. Baba, T. Suemoto, H. Akiyama, “High collection efficiency in fluorescence microscopy with a solid immersion lens,” Appl. Phys. Lett. 75, 1667–1669 (1999).
[CrossRef]

J. Appl. Phys. (1)

M. Baba, T. Sasaki, M. Yoshita, H. Akiyama, “Aberrations and allowances for errors in a hemisphere solid immersion lens for submicron-resolution photoluminescence microscopy,” J. Appl. Phys. 85, 6923–6925 (1999).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

T. D. Milster, “Chromatic correction of high-performance solid immersion lens systems,” Jpn. J. Appl. Phys. 38, 1777–1779 (1999).
[CrossRef]

Other (1)

J. Bischoff, “Beitraege zur theoretischen und experimentellen Untersuchung der Lichtbeugung an mikrostrukturierten Mehrschichtsystemen,” Habilitation thesis (Ilmenau Technical University, Ilmenau, Germany, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic view of the experimental geometry for near-field imaging with a dSIL.

Fig. 2
Fig. 2

Geometric parameters used to derive the dSIL zone radii, as defined in the text. The gray area represents the dSIL.

Fig. 3
Fig. 3

Size of zone radii as a function of focus shift factor k and ring number j (n=2.02, f=607 μm, m=1, λ0=633 nm).

Fig. 4
Fig. 4

Local period pj as function of focus shift factor k and ring number j for the same conditions as in Fig. 3.

Fig. 5
Fig. 5

Chromatic dependence of the focal length.

Fig. 6
Fig. 6

Fabrication process of the dSIL: direct e-beam writing combined with reactive ion etching.

Fig. 7
Fig. 7

SEM images of the binary dSIL etched in LaSF35: (a) center portion (50-μm scale bar), (b) edge detail (1-μm scale bar).

Fig. 8
Fig. 8

Phase offset introduced at the air–dSIL interface as a function of profile depth, calculated for various incident angles in TE polarization. The incident angle ϕi is correlated with the local period of the dSIL, as indicated.

Fig. 9
Fig. 9

Transmission efficiencies for (a) TE and (b) TM polarization as a function of the profile depth. Correlation with the local period is indicated by the inset.

Fig. 10
Fig. 10

(a) Local phase offset and (b) efficiencies as a function of the incident angle for both TE and TM polarization with a fixed profile depth of 200 nm.

Fig. 11
Fig. 11

Schematic view of the near-field experimental setup to evaluate the resolution enhancement of the dSIL concept.

Fig. 12
Fig. 12

Comparison of the measured spot size with and without the dSIL.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

na1-(Δl1+nf)=mλ0.
naj-(Δlj+naj-1)=mλ0.
aj-aj-1=Δlj.
aj=aj-1+Δlj.
nΔlj=mλ0+Δlj.
aj=f+j mλ0n+1njΔlj,aj=kf+jΔlj.
aj=f+j mλ0n+1n {aj-kf},
aj=naj+f(k-n)-jmλ0
f2+rj2=aj2,k2f2+rj2=aj2,
αaj2+βaj+χ=0,
α=(1-n2),β=2n[f(n-k)+jmλ0],
χ=f2{2kn-n2-1}+2f(kn)jmλ0-j2(mλ0)2.
rj(k=)=2j λ0n f+j λ0n21/2,
rj(k=1)=2j λ0n-1 f+j λ0n-121/2.
sin(ϕt)=λmnpj+1nsin(ϕi).
rjfj2+rj2=λn(rj-rj-1)+1nrj(kf)2+rj2.
d=0.61 λn sin θ.

Metrics