Abstract

Computer simulations of alternative LASIK ablation patterns were performed for corneal elevation maps of 13 real myopic corneas (range of myopia, -2.0 to -11.5 D). The computationally simulated ablation patterns were designed with biconic surfaces (standard Munnerlyn pattern, parabolic pattern, and biconic pattern) or with aberrometry measurements (customized pattern). Simulated results were compared with real postoperative outcomes. Standard LASIK refractive surgery for myopia increased corneal asphericity and spherical aberration. Computations with the theoretical Munnerlyn ablation pattern did not increase the corneal asphericity and spherical aberration. The theoretical parabolic pattern induced a slight increase of asphericity and spherical aberration, explaining only 40% of the clinically found increase. The theoretical biconic pattern controlled corneal spherical aberration. Computations showed that the theoretical customized pattern can correct high-order asymmetric aberrations. Simulations of changes in efficiency due to reflection and nonnormal incidence of the laser light showed a further increase in corneal asphericity. Consideration of these effects with a parabolic pattern accounts for 70% of the clinical increase in asphericity.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
    [CrossRef] [PubMed]
  2. S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
    [CrossRef] [PubMed]
  3. D. Huang, M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
    [CrossRef] [PubMed]
  4. S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).
  5. E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).
  6. B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
    [CrossRef] [PubMed]
  7. G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge U. Press, Cambridge, UK, 1997).
  8. J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
    [CrossRef] [PubMed]
  9. S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999).
    [CrossRef] [PubMed]
  10. J. Schwiegerling, R. Snyder, S. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. McRae, R. Krueger, R. Applegate, eds. (Slack, Inc.Thorofare, N.J., 2001), pp. 96–107.
  11. C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
    [CrossRef] [PubMed]
  12. J. Lin, “Critical review on refractive surgical lasers,” Opt. Eng. 34, 668–675 (1995).
    [CrossRef]
  13. J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).
  14. D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).
  15. F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
    [CrossRef] [PubMed]
  16. J. Schwiegerling, R. Snyder, “Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration,” J. Opt. Soc. Am. A 15, 2572–2579 (1998).
    [CrossRef]
  17. J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
    [CrossRef]
  18. E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
    [CrossRef]
  19. R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
    [CrossRef]
  20. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.
  21. S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
    [CrossRef] [PubMed]
  22. S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
    [PubMed]
  23. C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).
  24. M. Mrochen, T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. (Suppl.) 17, S584–S587 (2001).
  25. M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).
  26. R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
    [CrossRef]
  27. O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
    [CrossRef] [PubMed]
  28. C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
    [CrossRef] [PubMed]
  29. R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
    [CrossRef] [PubMed]
  30. T. Seiler, P. McDonnell, “Excimer laser photorefractive keratectomy,” Surv. Ophthalmol. 40, 89–118 (1995).
    [CrossRef] [PubMed]
  31. G. Pettit, M. Ediger, “Corneal-tissue absorption coefficients for 193- and 213-nm ultraviolet radiation,” Appl. Opt. 35, 3386–3391 (1996).
    [CrossRef] [PubMed]
  32. P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).
    [PubMed]
  33. D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003).
    [CrossRef] [PubMed]

2003 (3)

J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003).
[CrossRef] [PubMed]

2002 (5)

J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[CrossRef]

F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

D. Huang, M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[CrossRef] [PubMed]

2001 (7)

S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).

M. Mrochen, T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. (Suppl.) 17, S584–S587 (2001).

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

1999 (4)

R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
[CrossRef]

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef] [PubMed]

S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999).
[CrossRef] [PubMed]

1998 (2)

S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
[CrossRef] [PubMed]

J. Schwiegerling, R. Snyder, “Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration,” J. Opt. Soc. Am. A 15, 2572–2579 (1998).
[CrossRef]

1996 (1)

1995 (2)

T. Seiler, P. McDonnell, “Excimer laser photorefractive keratectomy,” Surv. Ophthalmol. 40, 89–118 (1995).
[CrossRef] [PubMed]

J. Lin, “Critical review on refractive surgical lasers,” Opt. Eng. 34, 668–675 (1995).
[CrossRef]

1994 (1)

P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).
[PubMed]

1990 (1)

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

1988 (2)

C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[CrossRef] [PubMed]

O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
[CrossRef] [PubMed]

1986 (1)

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

1985 (1)

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Adler, C.

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Andrews, J.

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

Anera, R.

J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).

J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[CrossRef]

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Arif, M.

D. Huang, M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[CrossRef] [PubMed]

Atchison, D. A.

G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge U. Press, Cambridge, UK, 1997).

Azar, D.

D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).

S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
[CrossRef] [PubMed]

Barbero, B.

S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Barbero, S.

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

Behrens, A.

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

Berlin, M.

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

Berns, M.

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

Burns, S. A.

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

Cano, D.

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

Chang, J.

J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef] [PubMed]

Chao, L.

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

Culbertson, W.

F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
[CrossRef] [PubMed]

Dardenne, M.

O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
[CrossRef] [PubMed]

Dehm, E.

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Deutsch, T.

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Dorronsoro, C.

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

Dougherty, P.

P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).
[PubMed]

Dudeja, D. R.

J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef] [PubMed]

Ediger, M.

Farah, S.

S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
[CrossRef] [PubMed]

Frenschock, O.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

Gatinel, D.

D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).

Georgiadis, A.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

Giebel, A.

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

Gruchman, T.

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

Gurdal, C.

S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
[CrossRef] [PubMed]

Hillenkamp, F.

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Hita, E.

J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[CrossRef]

Ho, A.

F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
[CrossRef] [PubMed]

Hoang-Xuan, T.

D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).

Holladay, J. T.

J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef] [PubMed]

Huang, D.

D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003).
[CrossRef] [PubMed]

D. Huang, M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[CrossRef] [PubMed]

Jiménez, J.

J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).

Jiménez, J. R.

J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[CrossRef]

Jiménez del Barco, L.

J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).

J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[CrossRef]

Kermani, O.

O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
[CrossRef] [PubMed]

Koons, S.

C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[CrossRef] [PubMed]

Koort, H.

O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
[CrossRef] [PubMed]

Krueger, R.

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

Langenbucher, A.

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

Liaw, L.-H.

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

Lin, J.

J. Lin, “Critical review on refractive surgical lasers,” Opt. Eng. 34, 668–675 (1995).
[CrossRef]

Llorente, L.

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

MacRae, S.

S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999).
[CrossRef] [PubMed]

J. Schwiegerling, R. Snyder, S. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. McRae, R. Krueger, R. Applegate, eds. (Slack, Inc.Thorofare, N.J., 2001), pp. 96–107.

Maloney, R.

P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).
[PubMed]

Manns, F.

F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
[CrossRef] [PubMed]

Maolong, T.

D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003).
[CrossRef] [PubMed]

Marcos, S.

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

Marshall, J.

C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[CrossRef] [PubMed]

McDonnell, P.

T. Seiler, P. McDonnell, “Excimer laser photorefractive keratectomy,” Surv. Ophthalmol. 40, 89–118 (1995).
[CrossRef] [PubMed]

Members, V. S. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Merayo, J.

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

Merayo-Lloves, J.

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

Merayo-Lloves, J. M.

S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
[CrossRef]

Mrochen, M.

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

M. Mrochen, T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. (Suppl.) 17, S584–S587 (2001).

Munnerlyn, C.

C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[CrossRef] [PubMed]

Navarro, R.

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

R. Navarro, E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24, 1–3 (1999).
[CrossRef]

Pallikaris, I.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

Papatzanaki, M.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

Parel, J.

F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
[CrossRef] [PubMed]

Pettit, G.

Puliafito, C.

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Roth, E.

O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
[CrossRef] [PubMed]

Schwiegerling, J.

J. Schwiegerling, R. Snyder, “Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration,” J. Opt. Soc. Am. A 15, 2572–2579 (1998).
[CrossRef]

J. Schwiegerling, R. Snyder, S. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. McRae, R. Krueger, R. Applegate, eds. (Slack, Inc.Thorofare, N.J., 2001), pp. 96–107.

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Seiler, T.

M. Mrochen, T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. (Suppl.) 17, S584–S587 (2001).

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

T. Seiler, P. McDonnell, “Excimer laser photorefractive keratectomy,” Surv. Ophthalmol. 40, 89–118 (1995).
[CrossRef] [PubMed]

Seitz, B.

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

Shekhar, R.

D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003).
[CrossRef] [PubMed]

Smith, G.

G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge U. Press, Cambridge, UK, 1997).

Snyder, R.

J. Schwiegerling, R. Snyder, “Custom photorefractive keratectomy ablations for the correction of spherical and cylindrical refractive error and higher-order aberration,” J. Opt. Soc. Am. A 15, 2572–2579 (1998).
[CrossRef]

J. Schwiegerling, R. Snyder, S. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. McRae, R. Krueger, R. Applegate, eds. (Slack, Inc.Thorofare, N.J., 2001), pp. 96–107.

Srinivasan, R.

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

Stathi, E.

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

Steinert, R.

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Suarez, E. S.

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

Thibos, L. N.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Torres, F.

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

VerSteeg, B.

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

Webb, R. H.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Wellish, K.

P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).
[PubMed]

Wong, J.

S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (2)

P. Dougherty, K. Wellish, R. Maloney, “Excimer laser ablation rate and corneal hydration,” Am. J. Ophthalmol. 118, 169–176 (1994).
[PubMed]

D. Huang, T. Maolong, R. Shekhar, “Mathematical model of corneal surface smoothing after laser refractive surgery,” Am. J. Ophthalmol. 135, 267–278 (2003).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. R. Jiménez, R. Anera, L. Jiménez del Barco, E. Hita, “Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea,” Appl. Phys. Lett. 81, 1521–1523 (2002).
[CrossRef]

ARVO E-abstract (1)

C. Dorronsoro, D. Cano, S. Barbero, J. Merayo, L. Llorente, S. Marcos, “Understanding the standard algorithm for corneal refractive surgery using laser ablation of PMMA surfaces,” ARVO E-abstract 2535 (2003).

Invest. Ophthalmol. Visual Sci. (4)

M. Berns, L. Chao, A. Giebel, L.-H. Liaw, J. Andrews, B. VerSteeg, “Human corneal ablation threshold using the 193-nm ArF excimer laser,” Invest. Ophthalmol. Visual Sci. 40, 826–830 (1999).

S. Marcos, B. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

E. Moreno-Barriuso, J. Merayo-Lloves, S. Marcos, R. Navarro, L. Llorente, S. Barbero, “Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing,” Invest. Ophthalmol. Visual Sci. 42, 1396–1403 (2001).

D. Gatinel, T. Hoang-Xuan, D. Azar, “Determination of corneal asphericity after myopia surgery with the excimer laser: a mathematical model,” Invest. Ophthalmol. Visual Sci. 42, 1736–1742 (2001).

J. Cataract Refract. Surg. (8)

F. Manns, A. Ho, J. Parel, W. Culbertson, “Ablation profiles for wavefront-guided correction of myopia and primary spherical aberration,” J. Cataract Refract. Surg. 28, 766–774 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. M. Merayo-Lloves, “Total and corneal aberrations in an unilateral aphakic subject,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

C. Munnerlyn, S. Koons, J. Marshall, “Photorefractive keratectomy: a technique for laser refractive surgery,” J. Cataract Refract. Surg. 14, 46–52 (1988).
[CrossRef] [PubMed]

S. Farah, D. Azar, C. Gurdal, J. Wong, “Laser in situ keratomileusis: literature review of a developing technique,” J. Cataract Refract. Surg. 24, 989–1006 (1998).
[CrossRef] [PubMed]

D. Huang, M. Arif, “Spot size and quality of scanning laser correction of higher-order wavefront aberrations,” J. Cataract Refract. Surg. 28, 407–416 (2002).
[CrossRef] [PubMed]

J. T. Holladay, D. R. Dudeja, J. Chang, “Functional vision and corneal changes after laser in situ keratomileusis determined by contrast sensitivity, glare testing and corneal topography,” J. Cataract Refract. Surg. 25, 663–669 (1999).
[CrossRef] [PubMed]

S. MacRae, “Excimer ablation design and elliptical transition zones,” J. Cataract Refract. Surg. 25, 1191–1197 (1999).
[CrossRef] [PubMed]

O. Kermani, H. Koort, E. Roth, M. Dardenne, “Mass spectroscopic analysis of excimer laser ablated material from human corneal tissue,” J. Cataract Refract. Surg. 14, 638–641 (1988).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

J. Refract. Surg. (2)

J. Jiménez, R. Anera, L. Jiménez del Barco, “Equationfor corneal asphericity after corneal refractive surgery,” J. Refract. Surg. 29, 65–69 (2003).

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

J. Refract. Surg. (Suppl.) (1)

M. Mrochen, T. Seiler, “Influence of corneal curvature on calculation of ablation patterns used in photorefractive laser surgery,” J. Refract. Surg. (Suppl.) 17, S584–S587 (2001).

Lasers Surg. Med. (1)

I. Pallikaris, M. Papatzanaki, E. Stathi, O. Frenschock, A. Georgiadis, “Laser in situ keratomileusis,” Lasers Surg. Med. 10, 463–468 (1990).
[CrossRef] [PubMed]

Ophthalmology (2)

B. Seitz, F. Torres, A. Langenbucher, A. Behrens, E. S. Suarez, “Posterior corneal curvature changes after myopic laser in situ keratomileusis,” Ophthalmology 108, 666–672 (2001).
[CrossRef] [PubMed]

C. Puliafito, R. Steinert, T. Deutsch, F. Hillenkamp, E. Dehm, C. Adler, “Excimer laser ablation of the cornea and lens,” Ophthalmology 92, 741–748 (1985).
[CrossRef] [PubMed]

Opt. Eng. (1)

J. Lin, “Critical review on refractive surgical lasers,” Opt. Eng. 34, 668–675 (1995).
[CrossRef]

Opt. Lett. (1)

Opthalmology (1)

R. Krueger, T. Seiler, T. Gruchman, M. Mrochen, M. Berlin, “Stress wave amplitudes during laser surgery of the cornea,” Opthalmology 108, 1070–1074 (2001).
[CrossRef]

Optom. Vision Sci. (1)

E. Moreno-Barriuso, S. Marcos, R. Navarro, S. A. Burns, “Comparing laser ray tracing, spatially resolved refractometer and Hartmann–Shack sensor to measure the ocular wavefront aberration,” Optom. Vision Sci. 78, 152–156 (2001).
[CrossRef]

Science (1)

R. Srinivasan, “Ablation of polymers and biological tissue by ultraviolet lasers,” Science 234, 559–565 (1986).
[CrossRef] [PubMed]

Surv. Ophthalmol. (1)

T. Seiler, P. McDonnell, “Excimer laser photorefractive keratectomy,” Surv. Ophthalmol. 40, 89–118 (1995).
[CrossRef] [PubMed]

Other (3)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. H. Webb, V. S. T. Members, “Standards for reporting the optical aberrations of eyes,” in Vision Science and Its Applications, Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

G. Smith, D. A. Atchison, The Eye and Visual Optical Instruments (Cambridge U. Press, Cambridge, UK, 1997).

J. Schwiegerling, R. Snyder, S. MacRae, “Optical aberrations and ablation pattern design,” in Customized Corneal Ablation: The Quest for Super Vision, S. McRae, R. Krueger, R. Applegate, eds. (Slack, Inc.Thorofare, N.J., 2001), pp. 96–107.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Munnerlyn pattern correcting for -7 D within a 6-mm-diameter optical zone (O. Z.) for a cornea with 7.8-mm radius of curvature. The ablation pattern within the transition zone (T. Z.) was calculated as a fifth-order polynomial imposing the continuity condition on the function and on its first and second derivatives, between the O. Z. and the T. Z. and between treated and untreated zones.

Fig. 2
Fig. 2

Asphericities (Qx, first column, and Qy, second column) of the biconic surfaces that best fit the corneal heights within each individual optical zone for preoperative and postoperative real corneal topographies and for simulated corneas with the Munnerlyn pattern centered at the corneal apex. Patients are sorted by increasing correction, as in Table 1.

Fig. 3
Fig. 3

As Fig. 2, but with the parabolic pattern.

Fig. 4
Fig. 4

(a) Fourth-order spherical-aberration Zernike coefficient C40 and (b) sixth-order spherical aberration Zernike coefficient C60 for real postoperative corneas and for simulated post-Munnerlyn and postparabolic corneas. In these simulations the theoretical ablation patterns were calculated centered at the corneal apex. Data are for a 4.4-mm pupil.

Fig. 5
Fig. 5

(a) Fourth-order spherical-aberration Zernike coefficient C40 and (b) sixth-order spherical aberration Zernike coefficient C60 for real preoperative corneas and for simulated post-Munnerlyn, postparabolic, and postbiconic corneas. In these simulations the theoretical ablation patterns were calculated centered at the corneal apex. Data are for a 4.4-mm pupil.

Fig. 6
Fig. 6

Zernike coefficient C40 of the total (internal plus corneal) aberrations from the preoperative and postoperative LRT aberrometry measurements and from the computer simulations of the customized ablation. Data are for a 6.5-mm pupil.

Fig. 7
Fig. 7

RMS (a) of the total (internal plus corneal) third-order aberrations and (b) of the total fourth-and-higher-order asymmetric aberrations from the preoperative and postoperative LRT aberrometry measurements and from the computer simulations of the customized ablation. Data are for a 6.5-mm pupil.

Fig. 8
Fig. 8

Munnerlyn and parabolic patterns considering and not considering reflection losses and nonnormal incidence with the model provided by Jiménez et al.17 The represented ablation-pattern section corresponds to eye 3 along the meridian of correction -3.75 D within the optical zone.

Fig. 9
Fig. 9

Obtained minus attempted spherical-equivalent correction versus preoperative spherical-equivalent correction for the Munnerlyn pattern considering and not considering reflection losses and nonnormal incidence with the model described by Jiménez et al.17

Fig. 10
Fig. 10

Mean asphericities (Qx+Qy)/2 of the biconic surfaces that best fit the corneal heights within each individual optical zone for postoperative real corneal topographies and for post-Munnerlyn and postparabolic simulated corneas considering and not considering both reflection and nonnormal incidence. Patients are sorted by increasing correction, as in Table 1.

Tables (1)

Tables Icon

Table 1 Clinical Parameters Used for Surgery of All Eyes in the Study

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

fMun(ρ)=R12-ρ2-R1-R22-ρ2+R2+f0,
S=(n-1)(1/R2-1/R1),
fMun(ρ)=(R12-ρ2)1/2-R1(n-1)n-1+R1S2-ρ21/2-R12-Φ241/2+R1(n-1)n-1+R1S2-Φ241/2+f0TZ.
fpar(ρ)=4Sρ23-SΦ23+f0TZ.
fcus(r)=W(r)n-1,
b(ρ, θ; Rx, Ry, Qx, Qy, θx, b0)=b0-ρ2cos2(θ-θx)Rx+sin2(θ-θx)Ry1+1-ρ2(Qx+1) cos2(θ-θx)Rx2+(Qy+1) sin2(θ-θx)Ry21/2
fMun(ρ, θ)=b(ρ, θ; Rx1, Ry1, 0, 0, θx1, 0)-b(ρ, θ; Rx2, Ry2, 0, 0, θx2, 0)+f0,
S2+C2sin2(θ-α2)=[S1+C1sin2(θ-α1)]+[S+C sin2(θ-α)],
S1=n-1Rx1,C1=(n-1)1Rx1-1Ry1,
α1=θx1,
fpar(ρ, θ)=bρ, θ; 38S, 38(S+C), -1, -1, α, f0.
fbic(ρ, θ)=b(ρ, θ; Rx1, Ry1, Qx1, Qy1, θx1, 0)-b(ρ, θ; Rx2, Ry2, Qx2, Qy2, θx2, 0)+f0,
w4=(n-1)(1+n2Q)8R3n2.
fcus(ρ, θ)=W(ρ, θ)n-1,
W(ρ, θ)=n=07mCnmZnm(ρ, θ).
d=m log(F/Fth),FFth,
K(ϕ)=1+a log{[1-R(ϕ)]cos ϕ},

Metrics