Abstract

We show that by using Monte Carlo simulations, one can study the characteristics of beams with adjustable spatial coherence properties that propagate through highly scattering media. Moreover, we show that a single simulation is sufficient to obtain the intensity distribution at the exit surface of the scattering medium for any degree of global coherence of the input beam. The efficient numerical procedure correctly reproduces the first- and second-order statistics of the intensity distribution obtained after propagation through diffusive media.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  2. R. Lenke, G. Maret, in Scattering in Polymeric and Colloidal Systems, W. Brown, K. Mortensen, eds. (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–73.
  3. J. Schmitt, A. Knuttel, M. Yadlowski, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11, 2226–2235 (1994).
    [CrossRef]
  4. Y. Pan, R. Birngruber, J. Rosperich, R. Engelhardt, “Low-coherence optical tomography in turbid tissue: theoretical analysis,” Appl. Opt. 34, 6564–6574 (1995).
    [CrossRef] [PubMed]
  5. V. R. Daria, C. Saloma, S. Kawata, “Excitation with a focused, pulsed optical beam in scattering media: diffraction effects,” Appl. Opt. 39, 5244–5255 (2000).
    [CrossRef]
  6. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191–1193 (2001).
    [CrossRef]
  7. A. Tycho, T. M. Jorgensen, “Comment on ‘Excitation with a focused, pulsed optical beam in scattering media: diffraction effects’,” Appl. Opt. 41, 4709–4711 (2002).
    [CrossRef] [PubMed]
  8. E. Baleine, A. Dogariu, “Propagation of partially coherent beams through particulate media,” J. Opt. Soc. Am. A 20, 2041–2045 (2003).
    [CrossRef]
  9. E. Wolf, “A new description of the second-order coherence phenomena in the space frequency domain,” in International Congress of Ophthalmology Conference Proceedings, No. 65, Optics in Four Dimensions, 1980, M. A. Machad, L. M. Narducci, eds. (American Institute of Physics, New York, 1981), pp. 42–48.
  10. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), pp. 276–287.
  11. J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, New York, 1975).
  12. H. Fuji, T. Asakura, “Statistical properties of image speckle patterns in partially coherent light,” Nouv. Rev. Opt. 6, 5–14 (1975).
    [CrossRef]

2003 (1)

2002 (1)

2001 (1)

2000 (1)

1995 (1)

1994 (1)

1983 (1)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

1975 (1)

H. Fuji, T. Asakura, “Statistical properties of image speckle patterns in partially coherent light,” Nouv. Rev. Opt. 6, 5–14 (1975).
[CrossRef]

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Asakura, T.

H. Fuji, T. Asakura, “Statistical properties of image speckle patterns in partially coherent light,” Nouv. Rev. Opt. 6, 5–14 (1975).
[CrossRef]

Baleine, E.

Birngruber, R.

Dainty, J. C.

J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, New York, 1975).

Daria, V. R.

Dogariu, A.

Engelhardt, R.

Fuji, H.

H. Fuji, T. Asakura, “Statistical properties of image speckle patterns in partially coherent light,” Nouv. Rev. Opt. 6, 5–14 (1975).
[CrossRef]

Jorgensen, T. M.

Kawata, S.

Knuttel, A.

Lenke, R.

R. Lenke, G. Maret, in Scattering in Polymeric and Colloidal Systems, W. Brown, K. Mortensen, eds. (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–73.

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), pp. 276–287.

Maret, G.

R. Lenke, G. Maret, in Scattering in Polymeric and Colloidal Systems, W. Brown, K. Mortensen, eds. (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–73.

Pan, Y.

Rosperich, J.

Saloma, C.

Schmitt, J.

Tycho, A.

Wang, L. V.

Wilson, B. C.

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), pp. 276–287.

E. Wolf, “A new description of the second-order coherence phenomena in the space frequency domain,” in International Congress of Ophthalmology Conference Proceedings, No. 65, Optics in Four Dimensions, 1980, M. A. Machad, L. M. Narducci, eds. (American Institute of Physics, New York, 1981), pp. 42–48.

Yadlowski, M.

Appl. Opt. (3)

J. Opt. Soc. Am. A (2)

Med. Phys. (1)

B. C. Wilson, G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Nouv. Rev. Opt. (1)

H. Fuji, T. Asakura, “Statistical properties of image speckle patterns in partially coherent light,” Nouv. Rev. Opt. 6, 5–14 (1975).
[CrossRef]

Opt. Lett. (1)

Other (4)

R. Lenke, G. Maret, in Scattering in Polymeric and Colloidal Systems, W. Brown, K. Mortensen, eds. (Gordon and Breach Science Publishers, Amsterdam, 2000), pp. 1–73.

E. Wolf, “A new description of the second-order coherence phenomena in the space frequency domain,” in International Congress of Ophthalmology Conference Proceedings, No. 65, Optics in Four Dimensions, 1980, M. A. Machad, L. M. Narducci, eds. (American Institute of Physics, New York, 1981), pp. 42–48.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, Cambridge, UK, 1995), pp. 276–287.

J. C. Dainty, Laser Speckle and Related Phenomena (Springer-Verlag, Berlin, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Intensity correlation length—i.e., speckle size—as a function of the bin size (the unit cell in which the photons are added coherently).

Fig. 2
Fig. 2

Output intensity probability distribution for different degrees of coherence of the input beam, for a scattering medium with g=0.1 and OD=3.

Fig. 3
Fig. 3

Contrast of intensity fluctuations C after propagation of different partially coherent beams through a medium with OD=3 and g=0.1 (circles), g=0.3 (squares), g=0.5 (inverted triangles). The insets present the intensity distribution images for beams with q as indicated.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S(r, ν)=S1(r, ν)+S2(r, ν)+2[S1(r, ν)S2(r, ν)]1/2×Reμ(r1, r2, ν)exp-2πiν s1-s2c,
S(ν)=m,nNwmwn|μrm,rn(ν)|×cosΦrm,rn(ν)-2πiν sm-snc,

Metrics