Abstract

Adaptive optics (AO) systems take sampled measurements of the wave-front phase. Because in the general case the spatial-frequency content of the phase aberration is not band limited, aliasing will occur. This aliasing will cause increased residual error and increased scattered light in the point-spread function (PSF). The spatially filtered wave-front sensor (SFWFS) mitigates this phenomenon by using a field stop at a focal plane before the wave-front sensor. This stop acts as a low-pass filter on the phase, significantly reducing the high-spatial-frequency content phase seen by the wave-front sensor at moderate to high Strehl ratios. We study the properties and performance of the SFWFS for open- and closed-loop correction of atmospheric turbulence, segmented-primary-mirror errors, and sensing with broadband light. In closed loop the filter reduces high-spatial-frequency phase power by a factor of 103 to 108. In a full AO-system simulation, this translates to a reduction by up to 625 times in the residual error power due to aliasing over a specific spatial frequency range. The final PSF (generated with apodization of the pupil) has up to a 100 times reduction in intensity out to λ/2d.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998).
  2. A. V. Oppenheim, A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, Upper Saddle River, N.J., 1997).
  3. F. Rigaut, J.-P. Veran, O. Lai, “An analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies 3, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1038–1048 (1998).
    [CrossRef]
  4. A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
    [CrossRef]
  5. M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
    [CrossRef]
  6. B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
    [CrossRef]
  7. B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
    [CrossRef]
  8. M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
    [CrossRef]
  9. C. B. Hogge, R. R. Butts, M. Birlakoff, “Characteristics of phase-aberrated nondiffraction-limited laser beams,” Appl. Opt. 13, 1065–1070 (1974).
    [CrossRef] [PubMed]
  10. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Upper Saddle River, N.J., 1989).
  11. L. A. Poyneer, M. Troy, B. Macintosh, D. T. Gavel, “Experimental validation of Fourier transform wave-front reconstruction at Palomar Observatory,” Opt. Lett. 28, 798–800 (2003).
    [CrossRef] [PubMed]
  12. E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
    [CrossRef]
  13. A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
    [CrossRef]
  14. G. Chanan, C. O’Hara, M. Troy, “Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm,” Appl. Opt. 39, 4706–4714 (2000).
    [CrossRef]
  15. M. Troy, personal communication (mtroy@jpl.nasa.gov, Jet Propulsion Lab, Pasadena, California, 2003).
  16. C. Carrano, personal communication (cjc@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, 2003).
  17. A. Give’on, J. Kasdin, personal communication (agiveon@princeton.edu, Princeton University, Princeton, New Jersey, 2003).

2003

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

L. A. Poyneer, M. Troy, B. Macintosh, D. T. Gavel, “Experimental validation of Fourier transform wave-front reconstruction at Palomar Observatory,” Opt. Lett. 28, 798–800 (2003).
[CrossRef] [PubMed]

2002

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
[CrossRef]

2001

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

2000

1974

Bauman, B. J.

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Berkefeld, T.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Birlakoff, M.

Brase, J. M.

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Butts, R. R.

Carr, E.

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Carrano, C.

C. Carrano, personal communication (cjc@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, 2003).

Carrano, C. J.

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Chanan, G.

Costa, J.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Feldt, M.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Gavel, D.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Gavel, D. T.

L. A. Poyneer, M. Troy, B. Macintosh, D. T. Gavel, “Experimental validation of Fourier transform wave-front reconstruction at Palomar Observatory,” Opt. Lett. 28, 798–800 (2003).
[CrossRef] [PubMed]

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
[CrossRef]

Give’on, A.

A. Give’on, J. Kasdin, personal communication (agiveon@princeton.edu, Princeton University, Princeton, New Jersey, 2003).

Graham, J.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Graham, J. R.

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998).

Hatzes, A. P.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Henning, T. F.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Hippler, S.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Hodge, P. E.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
[CrossRef]

Hogge, C. B.

Johansson, E. M.

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
[CrossRef]

Jones, S.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Kalas, P.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Kasdin, J.

A. Give’on, J. Kasdin, personal communication (agiveon@princeton.edu, Princeton University, Princeton, New Jersey, 2003).

Koresko, C. D.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Kuchner, M. J.

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Lai, O.

F. Rigaut, J.-P. Veran, O. Lai, “An analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies 3, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1038–1048 (1998).
[CrossRef]

Lloyd, J. P.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
[CrossRef]

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Macintosh, B.

L. A. Poyneer, M. Troy, B. Macintosh, D. T. Gavel, “Experimental validation of Fourier transform wave-front reconstruction at Palomar Observatory,” Opt. Lett. 28, 798–800 (2003).
[CrossRef] [PubMed]

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Macintosh, B. A.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
[CrossRef]

Makidon, R.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Makidon, R. B.

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Max, C. E.

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Neuhauser, R.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

O’Hara, C.

Olivier, S.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Olivier, S. S.

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Upper Saddle River, N.J., 1989).

A. V. Oppenheim, A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, Upper Saddle River, N.J., 1997).

Oppenheimer, B. R.

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

Palmer, D.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Patience, J.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

Perrin, M.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Perrin, M. D.

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

Poyneer, L.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Poyneer, L. A.

Puga, E.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Rigaut, F.

F. Rigaut, J.-P. Veran, O. Lai, “An analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies 3, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1038–1048 (1998).
[CrossRef]

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Upper Saddle River, N.J., 1989).

Schmid, H. M.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Severson, S.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Sheinis, A.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Sivaramakrishnan, A.

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
[CrossRef]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Sommargren, G.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Troy, M.

L. A. Poyneer, M. Troy, B. Macintosh, D. T. Gavel, “Experimental validation of Fourier transform wave-front reconstruction at Palomar Observatory,” Opt. Lett. 28, 798–800 (2003).
[CrossRef] [PubMed]

G. Chanan, C. O’Hara, M. Troy, “Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm,” Appl. Opt. 39, 4706–4714 (2000).
[CrossRef]

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

M. Troy, personal communication (mtroy@jpl.nasa.gov, Jet Propulsion Lab, Pasadena, California, 2003).

Turatto, M.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Veran, J.-P.

F. Rigaut, J.-P. Veran, O. Lai, “An analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies 3, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1038–1048 (1998).
[CrossRef]

Wallace, J. K.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Waters, R.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Weiss, R.

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

Wilhelmsen, J.

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

Willsky, A. S.

A. V. Oppenheim, A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, Upper Saddle River, N.J., 1997).

Appl. Opt.

Astrophys. J.

M. D. Perrin, A. Sivaramakrishnan, R. B. Makidon, B. R. Oppenheimer, J. R. Graham, “The structure of high Strehl ratio point-spread functions,” Astrophys. J. 596, 702–712 (2003).
[CrossRef]

A. Sivaramakrishnan, C. D. Koresko, R. B. Makidon, T. Berkefeld, M. J. Kuchner, “Ground-based coronagraphy with high-order adaptive optics,” Astrophys. J. 552, 397–408 (2001).
[CrossRef]

Astrophys. J. Lett.

A. Sivaramakrishnan, J. P. Lloyd, P. E. Hodge, B. A. Macintosh, “Speckle decorrelation and dynamic range in speckle noise-limited imaging,” Astrophys. J. Lett. 581, L59–L62 (2002).
[CrossRef]

Opt. Lett.

Other

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, Oxford, UK, 1998).

A. V. Oppenheim, A. S. Willsky, Signals and Systems, 2nd ed. (Prentice-Hall, Upper Saddle River, N.J., 1997).

F. Rigaut, J.-P. Veran, O. Lai, “An analytical model for Shack–Hartmann-based adaptive optics systems,” in Adaptive Optical System Technologies 3, D. Bonaccini, R. K. Tyson, eds., Proc. SPIE3353, 1038–1048 (1998).
[CrossRef]

M. Troy, personal communication (mtroy@jpl.nasa.gov, Jet Propulsion Lab, Pasadena, California, 2003).

C. Carrano, personal communication (cjc@llnl.gov, Lawrence Livermore National Laboratory, Livermore, California, 2003).

A. Give’on, J. Kasdin, personal communication (agiveon@princeton.edu, Princeton University, Princeton, New Jersey, 2003).

B. Macintosh, J. Graham, L. Poyneer, G. Sommargren, J. Wilhelmsen, D. Gavel, S. Jones, P. Kalas, J. P. Lloyd, R. Makidon, S. Olivier, D. Palmer, J. Patience, M. Perrin, S. Severson, A. Sheinis, A. Sivaramakrishnan, M. Troy, J. K. Wallace, “Extreme adaptive optics planet imager: XAOPI,” Techniques and Instrumentation for Detection of Exoplanets, D. R. Coulter, ed., Proc. SPIE5170, 272–282 (2003).
[CrossRef]

B. Macintosh, S. S. Olivier, B. J. Bauman, J. M. Brase, E. Carr, C. J. Carrano, D. T. Gavel, C. E. Max, J. Patience, “Practical high-order adaptive optics systems for extrasolar planet searches,” in Adaptive Optics Systems and Technology II, R. K. Tyson, D. Bonaccini, M. C. Roggemann, eds., Proc. SPIE4494, 60–68 (2002).
[CrossRef]

M. Feldt, T. F. Henning, S. Hippler, R. Weiss, M. Turatto, R. Neuhauser, A. P. Hatzes, H. M. Schmid, R. Waters, E. Puga, J. Costa, “Can we really go for direct exo-planet detection from the ground?” in High-contrast Imaging for Exo-planet Detection, A. B. Schultz, R. G. Lyon, eds., Proc. SPIE4860, 149–160 (2003).
[CrossRef]

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Upper Saddle River, N.J., 1989).

E. M. Johansson, D. T. Gavel, “Simulation of stellar speckle imaging,” in Amplitude and Intensity Spatial Interferometry II, J. B. Breckinridge, ed., Proc. SPIE2200, 372–383 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of how the spatial filter works, for a very-large-amplitude { cos [ 2 π y ( 0.6 / d ) ] } phase aberration. Top, magnitude and phase of the field at the pupil plane, linear scale. Middle, magnitude of the field at the focal plane, inverse log scale. Note the large lumps at multiples of the frequency location 0.6 / d on the sides. The black square is the field-stop edge. Bottom, magnitude and phase in the next pupil plane, same linear scale as top row. The magnitude is slightly reduced, owing to the amount of light rejected at the field stop. The phase is mostly cleaned up, though not entirely.

Fig. 2
Fig. 2

Magnitude of the field at the field stop for r 0 = 20   cm atmospheric turbulence. The field out to 2 λ / d from the center is shown, inverse log scale. The field-stop cutoff edge is shown by the black square. The atmospheric phase aberration was split into ideal low-pass and ideal high-pass components at the spatial frequency 1 / 2 d . Top, field due to the low-frequency portion, which bleeds significantly out beyond the field stop. Bottom, field due to the high-frequency portion, which scatters light almost exclusively beyond the field stop. This bleeding leads to reduced spatial filter performance, which is ameliorated by closed-loop AO operation.

Fig. 3
Fig. 3

Response of the spatial filter to atmospheric turbulence, as a ratio of input and output phase power spectra at the spatial filter. For open-loop operation, the filter performs poorly. Closed-loop operation was simulated by application of a parabolic filter to the input phase. For r 0 ranging from 15 cm to 25 cm (at 500 nm), the filtering suppresses HSF phase by a factor of 10 3 to 10 7 . As LSF power is reduced, either by AO or by an increase in r 0 , the performance of the spatial filter improves.

Fig. 4
Fig. 4

Response of the spatial filter to segmented-primary phase errors, as a ratio of input and output phase power spectra at the spatial filter. For open-loop operation, the filter performs poorly. End-to-end closed-loop AO operation with no noise (for a varying numbers of subapertures D / d = 30 , 50, and 62) results in significantly better spatial filter performance.

Fig. 5
Fig. 5

Comparison of regular WFS with SFWFS after end-to-end AO simulation ( D = 10   m , d = 16   cm , D / d = 62 ). The input-phase aberration is a static segmented-primary-mirror error of 110 nm rms, and there is no WFS noise. (a) PSD comparison. Reduction of aliasing results in 250 times less power in the controllable range in the phase residual. (b) PSF comparison (radial average, diffraction suppressed). This becomes a reduction of PSF intensity in the basin by a factor of 50.

Fig. 6
Fig. 6

Comparison of regular WFS and SFWFS after end-to-end AO simulation ( D = 10   m , d = 16   cm , D / d = 62 ). The input-phase aberration is static 20 cm r 0 atmospheric turbulence, and there is no WFS noise. (a) PSD comparison. Reduction of aliasing results in 625 times less power in the controllable range in the phase residual. (b) PSF comparison (radial average, diffraction suppressed). This becomes a reduction of PSF intensity in the basin by a factor of 100. The gain in performance in this case is larger than that in the segmented-primary-mirror case (Fig. 5), because there is more power to prevent in HSF aliasing.

Fig. 7
Fig. 7

Comparison of monochromatic (800 nm) and broadband (700–900 nm) SFWFS after end-to-end AO simulation ( D = 10   m , d = 16   cm , D / d = 62 ). Same segmented-primary-mirror errors as in Fig. 6. PSFs (radial average, diffraction suppressed) are shown. The only significant difference in PSFs occurs just inside the spatial-frequency cutoff, where the broadband case has increased error owing to both aliasing and incomplete sensing of frequencies near the cutoff.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

a ( x ,   y ) exp [ i ϕ ( x ,   y ) ] = a ( x ,   y ) × 1 + i ϕ ( x ,   y ) - ϕ 2 ( x ,   y ) 2 - i   ϕ 3 ( x ,   y ) 6 + ,
E ( X ,   Y ) = A ( X ,   Y )   *   δ ( X ,   Y ) + i Φ ( X ,   Y ) - Φ ( X ,   Y )   *   Φ ( X ,   Y ) 2 - i   Φ ( X ,   Y )   *   Φ ( X ,   Y )   *   Φ ( X ,   Y ) 6 + ,
ϕ ( x ,   y ) = cos 2 π y l .
Φ ( X ,   Y ) = 0.5 δ X ,   Y - λ l + δ X ,   Y + λ l .
E ( X ,   Y ) = A ( X ,   Y ) + 0.5 j A X ,   Y - λ l + A X ,   Y + λ l - 0.125 A X ,   Y - 2   λ l + 2 A ( X ,   Y ) + A X ,   Y + 2   λ l +   .
b ( r ) = 0.42 - 0.5   cos 2 π r D + 1 2 + 0.08   cos 4 π r D + 1 2 ,
r 0 - 5 / 6 ( f x 2 + f y 2 ) - 11 / 12 ,

Metrics