Abstract

We demonstrate a new optical imaging technique based on a directional detector that measures the intensity of light waves that propagate only in a narrow angular window around a specific direction. Light waves that propagate in other directions do not significantly affect the detector output. The directional detector is obtained by illuminating the interrogated object with a high-coherence light source and measuring the interference between the light wave reflected from the object and a reference wave. By measuring the intensity of the interference pattern with an optical detector that has a finite width and moving the object by use of a rotation stage, one can obtain the angular directionality of the filter. The use of coherent detection in the directional detector makes it possible to increase the sensitivity of the system. The directional detector was analyzed theoretically and demonstrated experimentally for a Gaussian beam scattered from a conducting cylinder. The interference enabled us to theoretically increase the angular resolution by a factor of ∼10 and experimentally by a factor of 8.5. A configuration for using a directional detector array to reconstruct a two-dimensional object is suggested. Since the directional detector makes it possible to reduce the effect of diffraction and scattering, reconstruction techniques based on nondiffracting sources, as implemented in x-ray tomography, may be used.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription