Abstract

A corneal aberrometer based on Shack–Hartmann wave-front sensing was developed and validated by using calibrated aspheric surfaces. The aberrometer was found to accurately measure corneal reflective aberrations, from which corneal topography and corneal refractive aberrations were derived. Measurements of reflective aberrations correlated well with theory (R2=0.964 to 0.994). The sag error root mean square (RMS) was small, ranging from 0.1 to 0.17 μm for four of the five calibrated surfaces with the fifth at 0.36 μm as a result of residual defocus. Measured refractive aberrations matched with theory and whole-eye aberrometry to within a small fraction of a wavelength. Measurements on three human corneas revealed very large refractive astigmatism (0.65–1.2 μm) and appreciable levels of trefoil (0.08–0.47 μm), coma (0.14–0.19 μm), and spherical aberration (0.18–0.25 μm). The mean values of these aberrations were significantly larger than the RMS in repeated measurements.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  2. J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  3. J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  4. L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999).
    [CrossRef]
  5. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  6. X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
    [CrossRef]
  7. A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
    [CrossRef]
  8. L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  9. A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
    [CrossRef]
  10. S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).
  11. K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001).
    [CrossRef]
  12. J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
    [PubMed]
  13. N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
    [CrossRef]
  14. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
    [CrossRef] [PubMed]
  15. P. Artal, E. Berrio, A. Guirao, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [CrossRef]
  16. X. Hong, L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16, S647–S650 (2000).
    [PubMed]
  17. S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–S601 (2001).
    [PubMed]
  18. Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
    [PubMed]
  19. Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
    [PubMed]
  20. J. Schwiegerling, R. W. Snyder, “Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy,” J. Cataract Refract. Surg. 26, 214–221 (2000).
    [CrossRef] [PubMed]
  21. J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
    [PubMed]
  22. T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
    [CrossRef] [PubMed]
  23. S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002).
    [PubMed]
  24. N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
    [PubMed]
  25. D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
    [PubMed]
  26. D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
    [CrossRef] [PubMed]
  27. D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53 (January), 31–36 (2000).
    [CrossRef]
  28. J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  29. L. N. Thibos, “The prospects for perfect vision,” J. Refract. Surg. 16, S540–S546 (2000).
    [PubMed]
  30. R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001).
    [CrossRef] [PubMed]
  31. P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  32. P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).
  33. R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996).
    [CrossRef]
  34. J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–916 (1997).
    [CrossRef]
  35. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
    [CrossRef] [PubMed]
  36. T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).
  37. T. Salmon, “Corneal contribution to the wavefront aberration of the eye,” Ph.D. dissertation (Indiana University, Bloomington, In., 1999).
  38. R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
    [PubMed]
  39. S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18, S572–S578 (2002).
    [PubMed]
  40. T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
    [CrossRef]
  41. M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
    [CrossRef]
  42. S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
    [CrossRef] [PubMed]
  43. S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
    [PubMed]
  44. R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
    [CrossRef]
  45. W. A. Douthwaite, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Br. J. Ophthamol. 79, 797–801 (1995).
    [CrossRef]
  46. D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998).
    [CrossRef]
  47. J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
    [PubMed]
  48. A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
    [CrossRef]
  49. C. Campbell, “Reconstruction of the corneal shape with the MasterVue Corneal Topography System,” Optom. Vision Sci. 74, 899–905 (1997).
    [CrossRef]
  50. S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vision Sci. 74, 945–962 (1997).
    [CrossRef]
  51. S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vision Sci. 74, 931–944 (1997).
    [CrossRef]
  52. R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997).
    [CrossRef]
  53. J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991).
    [PubMed]
  54. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.
  55. R. Mandell, “A guide to videokeratography,” Int. Contact Lens Clin. 23, 205–228 (1996).
    [CrossRef]
  56. R. Mandell, D. Horner, “Alignment of videokeratoscopes,” in An Atlas of Corneal Topography, D. Sanders, D. Kock, eds. (SLACK, Thorofare, N.J., 1993), pp. 197–204.
  57. D. Horner, T. Salmon, P. Soni, “Corneal topography,” Chap. 17 in Borish’s Clinical Refraction, I. Borish, W. Benjamin, eds. (Saunders, Philadelphia, Pa., 1998), pp. 524–558.
  58. D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).
  59. F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.
  60. L. N. Thibos, R. A. Applegate, “Assessment of optical quality,” in Customized Corneal Ablation and Super Vision, S. M. MacRae, R. R. Krueger, R. A. Applegate, eds. (SLACK, Thorofare, N.J., 2001), pp. 67–78.
  61. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
    [CrossRef]
  62. American National Standard for the Safe Use of Lasers (Laser Institute of America, Orlando, Fla., 2000).
  63. L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
    [CrossRef]
  64. A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth-Heinemann, Oxford, UK, 1998).

2003 (1)

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

2002 (16)

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18, S572–S578 (2002).
[PubMed]

T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
[PubMed]

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

P. Artal, E. Berrio, A. Guirao, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002).
[PubMed]

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

2001 (10)

S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–S601 (2001).
[PubMed]

R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001).
[CrossRef] [PubMed]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001).
[CrossRef]

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).

2000 (7)

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

J. Schwiegerling, R. W. Snyder, “Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy,” J. Cataract Refract. Surg. 26, 214–221 (2000).
[CrossRef] [PubMed]

X. Hong, L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16, S647–S650 (2000).
[PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

L. N. Thibos, “The prospects for perfect vision,” J. Refract. Surg. 16, S540–S546 (2000).
[PubMed]

D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53 (January), 31–36 (2000).
[CrossRef]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
[PubMed]

1999 (3)

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999).
[CrossRef]

1998 (2)

P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998).
[CrossRef]

1997 (8)

C. Campbell, “Reconstruction of the corneal shape with the MasterVue Corneal Topography System,” Optom. Vision Sci. 74, 899–905 (1997).
[CrossRef]

S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vision Sci. 74, 945–962 (1997).
[CrossRef]

S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vision Sci. 74, 931–944 (1997).
[CrossRef]

R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–916 (1997).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

1996 (4)

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996).
[CrossRef]

R. Mandell, “A guide to videokeratography,” Int. Contact Lens Clin. 23, 205–228 (1996).
[CrossRef]

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

1995 (2)

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

W. A. Douthwaite, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Br. J. Ophthamol. 79, 797–801 (1995).
[CrossRef]

1994 (1)

1991 (1)

J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991).
[PubMed]

1977 (1)

Alio, J. L.

S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002).
[PubMed]

Anwaruddin, R.

J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
[PubMed]

Applegate, R. A.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001).
[CrossRef] [PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997).
[CrossRef]

R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996).
[CrossRef]

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

L. N. Thibos, R. A. Applegate, “Assessment of optical quality,” in Customized Corneal Ablation and Super Vision, S. M. MacRae, R. R. Krueger, R. A. Applegate, eds. (SLACK, Thorofare, N.J., 2001), pp. 67–78.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Artal, P.

P. Artal, E. Berrio, A. Guirao, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

Barbero, S.

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Begley, C. G.

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

Benito, A.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Bennett, A. G.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth-Heinemann, Oxford, UK, 1998).

Berrio, E.

P. Artal, E. Berrio, A. Guirao, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

Bille, J.

Bradley, A.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.

Buettner, J.

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Campbell, C.

C. Campbell, “Reconstruction of the corneal shape with the MasterVue Corneal Topography System,” Optom. Vision Sci. 74, 899–905 (1997).
[CrossRef]

Castejon-Mochon, J. F.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Chateau, N.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Cheng, X.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Coorpender, S. J.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

Cox, I.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
[PubMed]

Cox, I. G.

Douthwaite, W. A.

W. A. Douthwaite, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Br. J. Ophthamol. 79, 797–801 (1995).
[CrossRef]

El Danasoury, M. A.

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

Endl, M. J.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

Fakhry, M.

S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002).
[PubMed]

Fermigier, B.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Forster, W.

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

Fujikado, T.

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Goelz, S.

Greivenkamp, J. E.

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–916 (1997).
[CrossRef]

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

Grimm, B.

Guirao, A.

Hilmantel, G.

R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001).
[CrossRef] [PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996).
[CrossRef]

Himebaugh, N.

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

Hirohara, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

Hofer, H.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
[PubMed]

Hong, X.

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001).
[CrossRef]

X. Hong, L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16, S647–S650 (2000).
[PubMed]

L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999).
[CrossRef]

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Horner, D.

D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998).
[CrossRef]

R. Mandell, D. Horner, “Alignment of videokeratoscopes,” in An Atlas of Corneal Topography, D. Sanders, D. Kock, eds. (SLACK, Thorofare, N.J., 1993), pp. 197–204.

D. Horner, T. Salmon, P. Soni, “Corneal topography,” Chap. 17 in Borish’s Clinical Refraction, I. Borish, W. Benjamin, eds. (Saunders, Philadelphia, Pa., 1998), pp. 524–558.

Howland, B.

Howland, H. C.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997).
[CrossRef]

R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996).
[CrossRef]

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
[CrossRef] [PubMed]

Joyeux, D.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Kelemen, E.

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
[PubMed]

Klein, S. A.

S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vision Sci. 74, 945–962 (1997).
[CrossRef]

S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vision Sci. 74, 931–944 (1997).
[CrossRef]

Klyce, S. D.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991).
[PubMed]

Koh, S.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

Kovacs, A.

Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

Kuroda, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

Leach, N.

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Liang, J.

Llorente, L.

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Lo-a-Foe, G.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Lopez-Gil, N.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Lowman, A. E.

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

Maeda, N.

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Mandell, R.

R. Mandell, “A guide to videokeratography,” Int. Contact Lens Clin. 23, 205–228 (1996).
[CrossRef]

R. Mandell, D. Horner, “Alignment of videokeratoscopes,” in An Atlas of Corneal Topography, D. Sanders, D. Kock, eds. (SLACK, Thorofare, N.J., 1993), pp. 197–204.

Marcos, S.

S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18, S572–S578 (2002).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–S601 (2001).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Marin, G.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Marin, J. M.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Marsack, J.

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Martinez, C. E.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

McDonald, M. B.

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

Mellinger, M. D.

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

Merayo-Lloves, J.

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Mihashi, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

Miller, D. T.

D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).

D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53 (January), 31–36 (2000).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.

Miller, J. M.

J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
[PubMed]

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

Milner, T.

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

Morris, G. M.

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Munson, K.

K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001).
[CrossRef]

Nagy, Z. Z.

Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

Nunez, R.

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

Oshika, T.

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

Palagyi-Deak, I.

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
[PubMed]

Patel, S.

S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002).
[PubMed]

Porter, J.

Rabbetts, R. B.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth-Heinemann, Oxford, UK, 1998).

Rand, R. H.

R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997).
[CrossRef]

Renard, D.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

Rice, D. A.

J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991).
[PubMed]

Roorda, A.

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Rylander, G.

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Salmon, T.

D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998).
[CrossRef]

T. Salmon, “Corneal contribution to the wavefront aberration of the eye,” Ph.D. dissertation (Indiana University, Bloomington, In., 1999).

D. Horner, T. Salmon, P. Soni, “Corneal topography,” Chap. 17 in Borish’s Clinical Refraction, I. Borish, W. Benjamin, eds. (Saunders, Philadelphia, Pa., 1998), pp. 524–558.

Salmon, T. O.

Schwiegerling, J.

J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
[PubMed]

J. Schwiegerling, R. W. Snyder, “Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy,” J. Cataract Refract. Surg. 26, 214–221 (2000).
[CrossRef] [PubMed]

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–916 (1997).
[CrossRef]

Schwiegerling, J. T.

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Snyder, R. W.

J. Schwiegerling, R. W. Snyder, “Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy,” J. Cataract Refract. Surg. 26, 214–221 (2000).
[CrossRef] [PubMed]

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

Soni, P.

D. Horner, T. Salmon, P. Soni, “Corneal topography,” Chap. 17 in Borish’s Clinical Refraction, I. Borish, W. Benjamin, eds. (Saunders, Philadelphia, Pa., 1998), pp. 524–558.

Starck, T.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

Straub, J.

J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
[PubMed]

Tano, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Thibos, L. N.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001).
[CrossRef]

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001).
[CrossRef] [PubMed]

L. N. Thibos, “The prospects for perfect vision,” J. Refract. Surg. 16, S540–S546 (2000).
[PubMed]

X. Hong, L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16, S647–S650 (2000).
[PubMed]

L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

L. N. Thibos, R. A. Applegate, “Assessment of optical quality,” in Customized Corneal Ablation and Super Vision, S. M. MacRae, R. R. Krueger, R. A. Applegate, eds. (SLACK, Thorofare, N.J., 2001), pp. 67–78.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.

F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.

Tu, E. Y.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

Wang, J.

J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991).
[PubMed]

Watanabe, H.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.

Williams, D.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
[PubMed]

Williams, D. R.

Wilson, G.

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

Ye, M.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Yoon, G. Y.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
[PubMed]

Zayac, E. J.

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

Zhang, X.

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Zhou, F.

D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).

F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.

Adv. Exp. Med. Biol. (1)

N. L. Himebaugh, L. N. Thibos, A. Bradley, G. Wilson, C. G. Begley, “Predicting optical effects of tear film break up on retinal image quality using the Shack–Hartmann aberrometer and computational optical modeling,” Adv. Exp. Med. Biol. 506, 1141–1147 (2002).
[CrossRef]

Am. J. Ophthalmol. (2)

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, M. A. El Danasoury, “Comparison of corneal wavefront aberrations after photorefractive keratectomy and laser in situ keratomileusis,” Am. J. Ophthalmol. 127, 1–7 (1999).
[CrossRef] [PubMed]

Arch. Ophthalmol. (Chicago) (1)

M. J. Endl, C. E. Martinez, S. D. Klyce, M. B. McDonald, S. J. Coorpender, R. A. Applegate, H. C. Howland, “Effect of larger ablation zone and transition zone on corneal optical aberrations after photorefractive keratectomy,” Arch. Ophthalmol. (Chicago) 119, 1159–1164 (2001).
[CrossRef]

Biomed. Sci. Instrum. (1)

J. Marsack, T. Milner, G. Rylander, N. Leach, A. Roorda, “Applying wavefront sensors and corneal topography to keratoconus,” Biomed. Sci. Instrum. 38, 471–476 (2002).
[PubMed]

Br. J. Ophthamol. (1)

W. A. Douthwaite, “EyeSys corneal topography measurement applied to calibrated ellipsoidal convex surfaces,” Br. J. Ophthamol. 79, 797–801 (1995).
[CrossRef]

CLAO J (1)

S. Patel, M. Fakhry, J. L. Alio, “Objective assessment of aberrations induced by multifocal contact lenses in vivo,” CLAO J 28, 196–201 (2002).
[PubMed]

Int. Contact Lens Clin. (2)

D. Horner, T. Salmon, “Accuracy of the EyeSys 2000 in measuring surface elevation of calibrated aspheres,” Int. Contact Lens Clin. 25, 171–177 (1998).
[CrossRef]

R. Mandell, “A guide to videokeratography,” Int. Contact Lens Clin. 23, 205–228 (1996).
[CrossRef]

Invest. Ophthalmol. Visual Sci. (3)

D. T. Miller, F. Zhou, X. Hong, “Shack–Hartmann corneal topographer,” Invest. Ophthalmol. Visual Sci. 42, S898 (2001).

T. Oshika, S. D. Klyce, R. A. Applegate, H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Visual Sci. 40, 1351–1355 (1999).

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to LASIK surgery for myopia from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

J. Cataract Refract. Surg. (4)

J. Schwiegerling, R. W. Snyder, “Corneal ablation patterns to correct for spherical aberration in photorefractive keratectomy,” J. Cataract Refract. Surg. 26, 214–221 (2000).
[CrossRef] [PubMed]

R. A. Applegate, L. N. Thibos, G. Hilmantel, “Optics of aberroscopy and super vision,” J. Cataract Refract. Surg. 27, 1093–1107 (2001).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, N. Maeda, T. Oshika, Y. Hirohara, T. Mihashi, “Wavefront analysis of higher-order aberrations in patients with cataract,” J. Cataract Refract. Surg. 28, 438–444 (2002).
[CrossRef] [PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, “Corneal and total optical aberrations in a unilateral aphakic patient,” J. Cataract Refract. Surg. 28, 1594–1600 (2002).
[CrossRef] [PubMed]

J. Math. Imaging Vision (1)

P. Artal, A. Guirao, E. Berrio, D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (10)

J. Liang, B. Grimm, S. Goelz, J. Bille, “Objective measurement of the wave aberrations of the human eye using a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

J. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
[CrossRef]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

A. Guirao, D. R. Williams, I. G. Cox, “Effect of rotation and translation on the expected benefit of an ideal method to correct the eye’s higher-order aberrations,” J. Opt. Soc. Am. A 18, 1003–1015 (2001).
[CrossRef]

P. Artal, E. Berrio, A. Guirao, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

J. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
[CrossRef]

A. Guirao, P. Artal, “Corneal wave aberration from videokeratography: accuracy and limitations of the procedure,” J. Opt. Soc. Am. A 17, 955–965 (2000).
[CrossRef]

J. Refract. Surg. (12)

J. E. Greivenkamp, M. D. Mellinger, R. W. Snyder, J. T. Schwiegerling, A. E. Lowman, J. M. Miller, “Comparison of three videokeratoscopes in measurement of toric test surfaces,” J. Refract. Surg. 12, 229–239 (1996).
[PubMed]

S. Barbero, S. Marcos, J. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography in keratoconus,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

L. N. Thibos, “The prospects for perfect vision,” J. Refract. Surg. 16, S540–S546 (2000).
[PubMed]

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-a-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refract. Surg. 18, S603–S609 (2002).
[PubMed]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refract. Surg. 16, S554–S559 (2000).
[PubMed]

R. A. Applegate, G. Hilmantel, H. C. Howland, E. Y. Tu, T. Starck, E. J. Zayac, “Corneal first surface optical aberrations and visual performance,” J. Refract. Surg. 16, 507–514 (2000).
[PubMed]

S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18, S572–S578 (2002).
[PubMed]

X. Hong, L. N. Thibos, “Longitudinal evaluation of optical aberrations following laser in situ keratomileusis surgery,” J. Refract. Surg. 16, S647–S650 (2000).
[PubMed]

S. Marcos, “Aberrations and visual performance following standard laser vision correction,” J. Refract. Surg. 17, S596–S601 (2001).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, E. Kelemen, A. Kovacs, “Wavefront-guided photorefractive keratectomy for myopia and myopic astigmatism,” J. Refract. Surg. 18, S615–S619 (2002).
[PubMed]

Z. Z. Nagy, I. Palagyi-Deak, A. Kovacs, E. Kelemen, W. Forster, “First results with wavefront-guided photorefractive keratectomy for hyperopia,” J. Refract. Surg. 18, S620–S623 (2002).
[PubMed]

J. M. Miller, R. Anwaruddin, J. Straub, J. Schwiegerling, “Higher order aberrations in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas,” J. Refract. Surg. 18, S579–S583 (2002).
[PubMed]

Opt. Lett. (1)

Optom. Vision Sci. (12)

R. A. Applegate, G. Hilmantel, H. C. Howland, “Corneal aberrations increase with the magnitude of radial keratotomy refractive correction,” Optom. Vision Sci. 73, 585–589 (1996).
[CrossRef]

J. Schwiegerling, J. E. Greivenkamp, “Using corneal height maps and polynomial decomposition to determine corneal aberrations,” Optom. Vision Sci. 74, 906–916 (1997).
[CrossRef]

K. Munson, X. Hong, L. N. Thibos, “Use of a Shack–Hartmann aberrometer to assess the optical outcome of corneal transplantation in a keratoconic eye,” Optom. Vision Sci. 78, 866–871 (2001).
[CrossRef]

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

L. N. Thibos, X. Hong, “Clinical applications of the Shack–Hartmann aberrometer,” Optom. Vision Sci. 76, 817–825 (1999).
[CrossRef]

R. A. Applegate, R. Nunez, J. Buettner, H. C. Howland, “How accurately can videokeratographic systems measure surface elevation?” Optom. Vision Sci. 72, 785–792 (1995).
[CrossRef]

C. Campbell, “Reconstruction of the corneal shape with the MasterVue Corneal Topography System,” Optom. Vision Sci. 74, 899–905 (1997).
[CrossRef]

S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vision Sci. 74, 945–962 (1997).
[CrossRef]

S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vision Sci. 74, 931–944 (1997).
[CrossRef]

R. H. Rand, H. C. Howland, R. A. Applegate, “Mathematical model of a Placido disk keratometer and its implications for recovery of corneal topography,” Optom. Vision Sci. 74, 926–930 (1997).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, A. Bradley, “Validation of a clinical Shack–Hartmann aberrometer,” Optom. Vision Sci. 80, 587–595 (2003).
[CrossRef]

L. N. Thibos, M. Ye, X. Zhang, A. Bradley, “Spherical aberration of the reduced schematic eye with elliptical refracting surface,” Optom. Vision Sci. 74, 548–556 (1997).
[CrossRef]

Phys. Today (1)

D. T. Miller, “Retinal imaging and vision at the frontiers of adaptive optics,” Phys. Today 53 (January), 31–36 (2000).
[CrossRef]

Refract. Corneal Surg. (1)

J. Wang, D. A. Rice, S. D. Klyce, “Analysis of the effects of astigmatism and misalignment on corneal surface reconstruction from photokeratoscopic data,” Refract. Corneal Surg. 7, 129–140 (1991).
[PubMed]

Vision Res. (1)

D. T. Miller, D. R. Williams, G. M. Morris, J. Liang, “Images of cone photoreceptors in the living human eye,” Vision Res. 36, 1067–1079 (1996).
[CrossRef] [PubMed]

Other (8)

T. Salmon, “Corneal contribution to the wavefront aberration of the eye,” Ph.D. dissertation (Indiana University, Bloomington, In., 1999).

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” in Vision Sciences and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 232–244.

F. Zhou, D. T. Miller, L. N. Thibos, A. Bradley, “Validation of a combined corneal topographer and aberrometer based on a Shack–Hartmann wavefront sensor,” presented at the meeting of the Association for Research in Vision and Ophthalmology (ARVO), Fort Lauderdale, Fla., 2003.

L. N. Thibos, R. A. Applegate, “Assessment of optical quality,” in Customized Corneal Ablation and Super Vision, S. M. MacRae, R. R. Krueger, R. A. Applegate, eds. (SLACK, Thorofare, N.J., 2001), pp. 67–78.

R. Mandell, D. Horner, “Alignment of videokeratoscopes,” in An Atlas of Corneal Topography, D. Sanders, D. Kock, eds. (SLACK, Thorofare, N.J., 1993), pp. 197–204.

D. Horner, T. Salmon, P. Soni, “Corneal topography,” Chap. 17 in Borish’s Clinical Refraction, I. Borish, W. Benjamin, eds. (Saunders, Philadelphia, Pa., 1998), pp. 524–558.

A. G. Bennett, R. B. Rabbetts, Clinical Visual Optics (Butterworth-Heinemann, Oxford, UK, 1998).

American National Standard for the Safe Use of Lasers (Laser Institute of America, Orlando, Fla., 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Combined Shack–Hartmann (SH) whole-eye and corneal aberrometer. Lenses L6, L7, and L8 are inserted for measuring corneal topography and aberrations (see the text for details). Other channels monitor the point-spread function (PB3, video camera) and the pupil position (PB4, video camera) and present a fixation target (PB1, L3).

Fig. 2
Fig. 2

Objective lens (L7) with a high numerical aperture allows aberration measurements over a large cornea section.

Fig. 3
Fig. 3

(A) The schematic diagram demonstrates the geometry of the cornea + objective system, as well as the incident and reflected rays. See the text for the algorithm used to reconstruct the corneal surface profile from the measured reflective wave aberrations. (B) Refractive aberrations of the model cornea derived from corneal topography. The refractive aberrations were calculated based on the optical path difference between the marginal path ( ABC ) and the paraxial path ( DOC ) from distant object to paraxial image.

Fig. 4
Fig. 4

Determining the apical radius of the cornea requires finding the (a) cat’s-eye and (b) confocal positions. At both positions, the objective lens creates a reflective wave front with nominally zero defocus.

Fig. 5
Fig. 5

(A) Radially averaged sag errors generated by the reconstruction algorithm for five symmetric model corneas positioned on the aberrometer axis. The algorithm converted theoretical SH slopes (θ) into surface topography. (B) Radially averaged sag errors for the same five model corneas with the surfaces rotated (3.8 deg) and laterally translated (0.5, 0.6, and 0.7 mm) to induce skew rays. Sag error is relative to the theoretical surface shape of each model cornea.

Fig. 6
Fig. 6

Correlation between measured and predicted reflective aberrations for Z 2 2 , Z 3 1 , Z 4 0 , and total aberrations. The latter includes astigmatism plus third through seventh Zernike orders. The plots contain all measurements obtained on the five examined model corneas for both symmetric and asymmetric orientations.

Fig. 7
Fig. 7

(A) Radially averaged corneal sag error for the SH corneal topographer. SH slope measurements (θ) were obtained for each of the five model corneas. Error is relative to the theoretical surface shape of the model cornea. (B) In the upper left is a representative raw CCD image that illustrates the very high sampling rate of the SH corneal topographer. Also shown are 2D contour maps of measured sag error for the SH corneal aberrometer. Contours cover the central 6.2 mm of each of the five cornea models examined. RMS sag error is displayed in the lower right of each plot. Contour lines represent 0.2-μm change in surface elevation.

Fig. 8
Fig. 8

Correlation between measured and predicted (A) refractive Z 4 0 and (B) total aberrations in the whole eye for the central 6.2 mm of the cornea. The latter includes astigmatism plus third through seventh Zernike orders. The plots contain independent refractive measurements on five model eyes with the SH whole-eye (triangles) and corneal (circles) aberrometers (Fig. 1). Predictions were based on a ray-tracing model that incorporated the theoretical corneal shape.

Fig. 9
Fig. 9

Reflective wave aberrations across the central 6.2 mm of the cornea for three healthy subjects. Average RMS values are plotted for Z 2 2 and Z 2 - 2 (astigmatism), Z 3 1 and Z 3 - 1 (coma), Z 3 3 and Z 3 - 3 (trefoil), Z 4 0 (spherical aberration), and total aberrations (astigmatism plus third through seventh Zernike orders). Measurements were obtained with the SH corneal topographer.

Fig. 10
Fig. 10

Refractive wave aberrations measured across the central 6.2 mm of the cornea for three subjects. Contour lines represent 0.32-μm change relative to a planar (perfect) wave front. Measurements were obtained with the SH corneal aberrometer.

Fig. 11
Fig. 11

Refractive wave aberrations across the central 6.2 mm of the cornea for three healthy subjects. Average total RMS values are plotted for Z 2 2 and Z 2 - 2 (astigmatism), Z 3 1 and Z 3 - 1 (coma), Z 3 3 and Z 3 - 3 (trefoil), Z 4 0 (spherical aberration), and total aberrations (astigmatism plus third through seventh Zernike orders). Measurements were obtained with the SH corneal topographer. Error bars represent one standard deviation of the measurements.

Tables (1)

Tables Icon

Table 1 Description of the Elliptical Surface Profile for the Six Model Eyes Employed in This Study a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Measured corneal diam at apex
= ( Corneal radius ) ( 2 N . A . ) .

Metrics