P. A. Penczek, “Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms,” J. Struct. Biol. 138, 34–46 (2002).

[CrossRef]
[PubMed]

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, M. Radermacher, “Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon transforms,” J. Struct. Biol. 128, 152–164 (1999).

[CrossRef]
[PubMed]

R. Marabini, G. T. Herman, J. M. Carazo, “3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs),” Ultramicroscopy 72, 53–65 (1998).

[CrossRef]
[PubMed]

N. Grigorieff, “Three-dimensional structure of bovine NADH: ubiquinone oxidoreductase (complex I) at 22 Å in ice,” J. Mol. Biol. 277, 1033–1046 (1998).

[CrossRef]
[PubMed]

R. J. Renka, “Algorithm 772. STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere,” ACM (Assoc. Comput. Mach.) Trans. Math. Softw. 23, 416–434 (1997).

[CrossRef]

S. Lanzavecchia, P. L. Bellon, “Electron tomography in conical tilt geometry. The accuracy of a direct Fourier method (DFM) and the suppression of non-tomographic noise,” Ultramicroscopy 63, 247–261 (1996).

[CrossRef]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

H. Schomberg, J. Timmer, “The gridding method for im-age reconstruction by Fourier transformation,” IEEE Trans. Med. Imaging 14, 596–607 (1995).

[CrossRef]

G. Beylkin, “On the fast Fourier transform of functions with singularities,” Appl. Comput. Harmon. Anal. 2, 363–381 (1995).

[CrossRef]

P. A. Penczek, R. A. Grassucci, J. Frank, “The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles,” Ultramicroscopy 53, 251–270 (1994).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, V. Scatturin, “SPARK, a kernel software programs for spatial reconstruction in electron microscopy,” J. Microsc. (Oxford) 171, 255–266 (1993).

[CrossRef]

A. Dutt, V. Rokhlin, “Fast Fourier transform for nonequispaced data,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 14, 1368–1393 (1993).

[CrossRef]

P. Penczek, M. Radermacher, J. Frank, “Three-dimensional reconstruction of single particles embedded in ice,” Ultramicroscopy 40, 33–53 (1992).

[CrossRef]
[PubMed]

R. H. Wade, “A brief look at imaging and contrast transfer,” Ultramicroscopy 46, 145–156 (1992).

[CrossRef]

J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski, “Selection of a convolution function for Fourier inversion using gridding,” IEEE Trans. Med. Imaging 10, 473–478 (1991).

[CrossRef]

M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank, “A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli,” J. Microsc. (Oxford) 141, RP1–RP2 (1986).

[CrossRef]

G. Harauz, M. van Heel, “Exact filters for general geometry three dimensional reconstruction,” Optik (Stuttgart) 73, 146–156 (1986).

J. D. O’Sullivan, “A fast sinc-function gridding algorithm for Fourier inversion in computer tomography,” IEEE Trans. Med. Imaging MI-4, 200–207 (1985).

[CrossRef]

W. O. Saxton, W. Baumeister, “The correlation averaging of a regularly arranged bacterial envelope protein,” J. Microsc. (Oxford) 127, 127–138 (1982).

[CrossRef]

S. S. Orlov, “Theory of three-dimensional reconstruction. 1. Conditions of a complete set of projections,” Sov. Phys. Crystallogr. 20, 312–314 (1976).

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

W. O. Saxton, W. Baumeister, “The correlation averaging of a regularly arranged bacterial envelope protein,” J. Microsc. (Oxford) 127, 127–138 (1982).

[CrossRef]

S. Lanzavecchia, P. L. Bellon, M. Radermacher, “Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon transforms,” J. Struct. Biol. 128, 152–164 (1999).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, “Electron tomography in conical tilt geometry. The accuracy of a direct Fourier method (DFM) and the suppression of non-tomographic noise,” Ultramicroscopy 63, 247–261 (1996).

[CrossRef]

S. Lanzavecchia, P. L. Bellon, V. Scatturin, “SPARK, a kernel software programs for spatial reconstruction in electron microscopy,” J. Microsc. (Oxford) 171, 255–266 (1993).

[CrossRef]

G. Beylkin, “On the fast Fourier transform of functions with singularities,” Appl. Comput. Harmon. Anal. 2, 363–381 (1995).

[CrossRef]

A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000).

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

W. N. Brouw, “Aperture synthesis,” in Methods in Computational Physics, B. Alder, S. Fernbach, M. Rotenberg, eds. (Academic, New York, 1975), pp. 131–175.

R. Marabini, G. T. Herman, J. M. Carazo, “3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs),” Ultramicroscopy 72, 53–65 (1998).

[CrossRef]
[PubMed]

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).

A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000).

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).

A. Dutt, V. Rokhlin, “Fast Fourier transform for nonequispaced data,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 14, 1368–1393 (1993).

[CrossRef]

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

P. A. Penczek, R. A. Grassucci, J. Frank, “The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles,” Ultramicroscopy 53, 251–270 (1994).

[CrossRef]
[PubMed]

P. Penczek, M. Radermacher, J. Frank, “Three-dimensional reconstruction of single particles embedded in ice,” Ultramicroscopy 40, 33–53 (1992).

[CrossRef]
[PubMed]

M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank, “A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli,” J. Microsc. (Oxford) 141, RP1–RP2 (1986).

[CrossRef]

J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic, New York, 1996).

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

P. A. Penczek, R. A. Grassucci, J. Frank, “The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles,” Ultramicroscopy 53, 251–270 (1994).

[CrossRef]
[PubMed]

N. Grigorieff, “Three-dimensional structure of bovine NADH: ubiquinone oxidoreductase (complex I) at 22 Å in ice,” J. Mol. Biol. 277, 1033–1046 (1998).

[CrossRef]
[PubMed]

G. Harauz, M. van Heel, “Exact filters for general geometry three dimensional reconstruction,” Optik (Stuttgart) 73, 146–156 (1986).

R. Marabini, G. T. Herman, J. M. Carazo, “3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs),” Ultramicroscopy 72, 53–65 (1998).

[CrossRef]
[PubMed]

J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski, “Selection of a convolution function for Fourier inversion using gridding,” IEEE Trans. Med. Imaging 10, 473–478 (1991).

[CrossRef]

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, M. Radermacher, “Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon transforms,” J. Struct. Biol. 128, 152–164 (1999).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, “Electron tomography in conical tilt geometry. The accuracy of a direct Fourier method (DFM) and the suppression of non-tomographic noise,” Ultramicroscopy 63, 247–261 (1996).

[CrossRef]

S. Lanzavecchia, P. L. Bellon, V. Scatturin, “SPARK, a kernel software programs for spatial reconstruction in electron microscopy,” J. Microsc. (Oxford) 171, 255–266 (1993).

[CrossRef]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski, “Selection of a convolution function for Fourier inversion using gridding,” IEEE Trans. Med. Imaging 10, 473–478 (1991).

[CrossRef]

R. Marabini, G. T. Herman, J. M. Carazo, “3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs),” Ultramicroscopy 72, 53–65 (1998).

[CrossRef]
[PubMed]

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).

J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski, “Selection of a convolution function for Fourier inversion using gridding,” IEEE Trans. Med. Imaging 10, 473–478 (1991).

[CrossRef]

F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).

J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski, “Selection of a convolution function for Fourier inversion using gridding,” IEEE Trans. Med. Imaging 10, 473–478 (1991).

[CrossRef]

J. D. O’Sullivan, “A fast sinc-function gridding algorithm for Fourier inversion in computer tomography,” IEEE Trans. Med. Imaging MI-4, 200–207 (1985).

[CrossRef]

A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000).

S. S. Orlov, “Theory of three-dimensional reconstruction. 1. Conditions of a complete set of projections,” Sov. Phys. Crystallogr. 20, 312–314 (1976).

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

P. Penczek, M. Radermacher, J. Frank, “Three-dimensional reconstruction of single particles embedded in ice,” Ultramicroscopy 40, 33–53 (1992).

[CrossRef]
[PubMed]

P. A. Penczek, “Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms,” J. Struct. Biol. 138, 34–46 (2002).

[CrossRef]
[PubMed]

P. A. Penczek, R. A. Grassucci, J. Frank, “The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles,” Ultramicroscopy 53, 251–270 (1994).

[CrossRef]
[PubMed]

D. Potts, G. Steidl, “New Fourier reconstruction algorithms for computerized tomography,” in Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A. F. Laine, M. A. Unser, eds. (SPIE, Bellingham, Wash., 2000), pp. 13–23.

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, M. Radermacher, “Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon transforms,” J. Struct. Biol. 128, 152–164 (1999).

[CrossRef]
[PubMed]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

P. Penczek, M. Radermacher, J. Frank, “Three-dimensional reconstruction of single particles embedded in ice,” Ultramicroscopy 40, 33–53 (1992).

[CrossRef]
[PubMed]

M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank, “A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli,” J. Microsc. (Oxford) 141, RP1–RP2 (1986).

[CrossRef]

M. Radermacher, “Weighted back-projection methods,” in Electron Tomography, J. Frank, ed. (Plenum, New York, 1992), pp. 91–115.

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

R. J. Renka, “Algorithm 772. STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere,” ACM (Assoc. Comput. Mach.) Trans. Math. Softw. 23, 416–434 (1997).

[CrossRef]

A. Dutt, V. Rokhlin, “Fast Fourier transform for nonequispaced data,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 14, 1368–1393 (1993).

[CrossRef]

W. O. Saxton, W. Baumeister, “The correlation averaging of a regularly arranged bacterial envelope protein,” J. Microsc. (Oxford) 127, 127–138 (1982).

[CrossRef]

S. Lanzavecchia, P. L. Bellon, V. Scatturin, “SPARK, a kernel software programs for spatial reconstruction in electron microscopy,” J. Microsc. (Oxford) 171, 255–266 (1993).

[CrossRef]

H. Schomberg, J. Timmer, “The gridding method for im-age reconstruction by Fourier transformation,” IEEE Trans. Med. Imaging 14, 596–607 (1995).

[CrossRef]

H. Schomberg, “Notes on direct and gridding-based Fourier inversion methods,” in Proceedings of the IEEE International Symposium on Biomedical Imaging, M. Unser, Z. P. Liang, eds. (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 645–648.

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

D. Potts, G. Steidl, “New Fourier reconstruction algorithms for computerized tomography,” in Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A. F. Laine, M. A. Unser, eds. (SPIE, Bellingham, Wash., 2000), pp. 13–23.

A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000).

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

H. Schomberg, J. Timmer, “The gridding method for im-age reconstruction by Fourier transformation,” IEEE Trans. Med. Imaging 14, 596–607 (1995).

[CrossRef]

G. Harauz, M. van Heel, “Exact filters for general geometry three dimensional reconstruction,” Optik (Stuttgart) 73, 146–156 (1986).

M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank, “A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli,” J. Microsc. (Oxford) 141, RP1–RP2 (1986).

[CrossRef]

R. H. Wade, “A brief look at imaging and contrast transfer,” Ultramicroscopy 46, 145–156 (1992).

[CrossRef]

M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank, “A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli,” J. Microsc. (Oxford) 141, RP1–RP2 (1986).

[CrossRef]

F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

D. Zwillinger, CRC Standard Mathematical Tables and Formulae (CRC Press, Boca Raton, Fla., 2002).

R. J. Renka, “Algorithm 772. STRIPACK: Delaunay triangulation and Voronoi diagram on the surface of a sphere,” ACM (Assoc. Comput. Mach.) Trans. Math. Softw. 23, 416–434 (1997).

[CrossRef]

G. Beylkin, “On the fast Fourier transform of functions with singularities,” Appl. Comput. Harmon. Anal. 2, 363–381 (1995).

[CrossRef]

I. S. Gabashvili, R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, P. Penczek, “Solution structure of the E. coli 70S ribosome at 11.5 Å resolution,” Cell 100, 537–549 (2000).

[CrossRef]
[PubMed]

J. D. O’Sullivan, “A fast sinc-function gridding algorithm for Fourier inversion in computer tomography,” IEEE Trans. Med. Imaging MI-4, 200–207 (1985).

[CrossRef]

J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski, “Selection of a convolution function for Fourier inversion using gridding,” IEEE Trans. Med. Imaging 10, 473–478 (1991).

[CrossRef]

H. Schomberg, J. Timmer, “The gridding method for im-age reconstruction by Fourier transformation,” IEEE Trans. Med. Imaging 14, 596–607 (1995).

[CrossRef]

V. Rasche, R. Proksa, R. Sinkus, P. Börnert, H. Eggers, “Resampling of data between arbitrary grids using convolution interpolation,” IEEE Trans. Med. Imaging 18, 385–392 (1999).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, V. Scatturin, “SPARK, a kernel software programs for spatial reconstruction in electron microscopy,” J. Microsc. (Oxford) 171, 255–266 (1993).

[CrossRef]

M. Radermacher, T. Wagenknecht, A. Verschoor, J. Frank, “A new 3-D reconstruction scheme applied to the 50S ribosomal subunit of E. coli,” J. Microsc. (Oxford) 141, RP1–RP2 (1986).

[CrossRef]

W. O. Saxton, W. Baumeister, “The correlation averaging of a regularly arranged bacterial envelope protein,” J. Microsc. (Oxford) 127, 127–138 (1982).

[CrossRef]

N. Grigorieff, “Three-dimensional structure of bovine NADH: ubiquinone oxidoreductase (complex I) at 22 Å in ice,” J. Mol. Biol. 277, 1033–1046 (1998).

[CrossRef]
[PubMed]

S. Lanzavecchia, P. L. Bellon, M. Radermacher, “Fast and accurate three-dimensional reconstruction from projections with random orientations via Radon transforms,” J. Struct. Biol. 128, 152–164 (1999).

[CrossRef]
[PubMed]

P. A. Penczek, “Three-dimensional spectral signal-to-noise ratio for a class of reconstruction algorithms,” J. Struct. Biol. 138, 34–46 (2002).

[CrossRef]
[PubMed]

J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M. Ladjadj, A. Leith, “SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields,” J. Struct. Biol. 116, 190–199 (1996).

[CrossRef]
[PubMed]

G. Harauz, M. van Heel, “Exact filters for general geometry three dimensional reconstruction,” Optik (Stuttgart) 73, 146–156 (1986).

A. Dutt, V. Rokhlin, “Fast Fourier transform for nonequispaced data,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 14, 1368–1393 (1993).

[CrossRef]

S. S. Orlov, “Theory of three-dimensional reconstruction. 1. Conditions of a complete set of projections,” Sov. Phys. Crystallogr. 20, 312–314 (1976).

S. Lanzavecchia, P. L. Bellon, “Electron tomography in conical tilt geometry. The accuracy of a direct Fourier method (DFM) and the suppression of non-tomographic noise,” Ultramicroscopy 63, 247–261 (1996).

[CrossRef]

R. H. Wade, “A brief look at imaging and contrast transfer,” Ultramicroscopy 46, 145–156 (1992).

[CrossRef]

P. A. Penczek, R. A. Grassucci, J. Frank, “The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles,” Ultramicroscopy 53, 251–270 (1994).

[CrossRef]
[PubMed]

P. Penczek, M. Radermacher, J. Frank, “Three-dimensional reconstruction of single particles embedded in ice,” Ultramicroscopy 40, 33–53 (1992).

[CrossRef]
[PubMed]

R. Marabini, G. T. Herman, J. M. Carazo, “3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs),” Ultramicroscopy 72, 53–65 (1998).

[CrossRef]
[PubMed]

M. Radermacher, “Weighted back-projection methods,” in Electron Tomography, J. Frank, ed. (Plenum, New York, 1992), pp. 91–115.

J. Frank, Three-Dimensional Electron Microscopy of Macromolecular Assemblies (Academic, New York, 1996).

F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).

W. N. Brouw, “Aperture synthesis,” in Methods in Computational Physics, B. Alder, S. Fernbach, M. Rotenberg, eds. (Academic, New York, 1975), pp. 131–175.

H. Schomberg, “Notes on direct and gridding-based Fourier inversion methods,” in Proceedings of the IEEE International Symposium on Biomedical Imaging, M. Unser, Z. P. Liang, eds. (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 645–648.

A. Okabe, B. Boots, K. Sugihara, S. N. Chiu, Spatial Tessellations: Concepts and Applications of Voronoi Diagrams (Wiley, New York, 2000).

D. Potts, G. Steidl, “New Fourier reconstruction algorithms for computerized tomography,” in Wavelet Applications in Signal and Image Processing VIII, A. Aldroubi, A. F. Laine, M. A. Unser, eds. (SPIE, Bellingham, Wash., 2000), pp. 13–23.

D. Zwillinger, CRC Standard Mathematical Tables and Formulae (CRC Press, Boca Raton, Fla., 2002).

R. Chandra, D. Kohr, D. Maydan, L. Dagum, J. McDonald, R. Menom, Parallel Programming in OpenMP (Academic, Boston, 2000).