Abstract

Following aberroscopy, aspheric front surface soft contact lenses (SCLs) were custom-made to correct spherical refractive error and ocular spherical aberration (SA) of 18 myopic and five hypermetropic subjects (age, 20.5±5 yr). On-eye residual aberrations, logMAR visual acuity, and contrast sensitivity were compared with the best-correcting spectacle lens, an equally powered standard SCL, and an SCL designed to be aberration free in air. Custom-made and spherical SCLs reduced SA (p<0.001;p<0.05) but did not change total root-mean-square (rms) wave-front aberration (WFA). Aberration-free SCLs increased SA (p<0.05), coma (p<0.05), and total rms WFA. Visual acuity remained unchanged with any of the SCL types compared with the spectacle lens correction. Contrast sensitivity at 6 cycles/degree improved with the custom-made SCLs (p<0.05). Increased coma with aspheric lens designs and uncorrected astigmatism limit the small possible visual benefit from correcting ocular SA with SCLs.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. N. Thibos, “The prospects for perfect vision,” J. Refractive Surg. 16, S540–S546 (2000).
  2. A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
    [CrossRef]
  3. J. Z. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  4. D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).
  5. G. Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
    [CrossRef]
  6. H. C. Howland, B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67, 1508–1518 (1977).
    [CrossRef] [PubMed]
  7. J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
    [CrossRef]
  8. J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
    [CrossRef] [PubMed]
  9. L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
    [CrossRef]
  10. A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
    [CrossRef]
  11. L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
    [CrossRef]
  12. I. Cox, B. A. Holden, “Soft contact lens-induced longitudinal spherical-aberration and its effect on contrast sensitivity,” Optom. Vision Sci. 67, 679–683 (1990).
    [CrossRef]
  13. N. Chateau, A. Blanchard, D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
    [CrossRef]
  14. J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
    [CrossRef]
  15. N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).
  16. D. A. Atchison, D. H. Scott, M. J. Cox, “Mathematical treatment of ocular aberrations: a user’s guide,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.
  17. X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
    [CrossRef]
  18. H. H. Dietze, M. J. Cox, “On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power,” Optom. Vision Sci. 80, 126–135 (2003).
    [CrossRef]
  19. G. T. Bauer, “Longitudinal spherical aberration of soft contact lenses,” Int. Contact Lens Clinics 6, 143–150 (1979).
  20. S. Plainis, W. N. Charman, “On-eye power characteristics of soft contact lenses,” Optom. Vision Sci. 75, 44–54 (1998).
    [CrossRef]
  21. J. Z. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
    [CrossRef]
  22. C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vision Sci. 80, 151–158 (2003).
    [CrossRef]
  23. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).
  24. T. W. Raasch, I. L. Bailey, M. A. Bullimore, “Repeatability of visual acuity measurement,” Optom. Vision Sci. 75, 342–348 (1998).
    [CrossRef]
  25. P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
    [CrossRef] [PubMed]
  26. D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
    [CrossRef] [PubMed]
  27. E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
    [CrossRef] [PubMed]
  28. I. Cox, “Theoretical calculation of the longitudinal spherical-aberration of rigid and soft contact-lenses,” Optom. Vision Sci. 67, 277–282 (1990).
    [CrossRef]
  29. W. A. Douthwaite, S. Pardhan, “Surface tilt measured with the EyeSys videokeratoscope: influence on corneal asymmetry,” Invest. Ophthalmol. Visual Sci. 39, 1727–1735 (1998).
  30. A. Tomlinson, C. A. Schwartz, “The position of the corneal apex in the normal eye,” Am. J. Optom. Physiol. Opt. 56, 236–240 (1979).
    [CrossRef] [PubMed]
  31. R. B. Mandell, C. S. Chiang, S. A. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995).
    [CrossRef]
  32. T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
    [CrossRef]
  33. D. A. Atchison, “Aberrations associated with rigid contact-lenses,” J. Opt. Soc. Am. A 12, 2267–2273 (1995).
    [CrossRef]
  34. A. Tomlinson, W. H. Ridder, R. Watanabe, “Blink-induced variations in visual performance with toric soft contact-lenses,” Optom. Vision Sci. 71, 545–549 (1994).
    [CrossRef]
  35. X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
    [CrossRef]
  36. J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
    [CrossRef] [PubMed]
  37. L. N. Thibos, A. Bradley, X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427–433 (2002).
    [CrossRef] [PubMed]
  38. T. L. Simpson, D. Regan, “Test–retest variability and correlations between tests of texture processing, motion processing, visual-acuity, and contrast sensitivity,” Optom. Vision Sci. 72, 11–16 (1995).
    [CrossRef]
  39. D. B. Elliott, K. Sanderson, A. Conkey, “The reliability of the Pelli–Robson contrast sensitivity chart,” Ophthalmic Physiol. Opt. 10, 21–24 (1990).
    [CrossRef] [PubMed]
  40. S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
    [CrossRef] [PubMed]
  41. J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
    [CrossRef] [PubMed]
  42. D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
    [CrossRef] [PubMed]
  43. H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
    [CrossRef]
  44. R. I. Calver, M. J. Cox, D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
    [CrossRef]
  45. J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

2003 (3)

H. H. Dietze, M. J. Cox, “On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power,” Optom. Vision Sci. 80, 126–135 (2003).
[CrossRef]

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vision Sci. 80, 151–158 (2003).
[CrossRef]

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

2002 (10)

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

G. Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
[CrossRef]

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

2001 (5)

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

2000 (4)

P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
[CrossRef] [PubMed]

L. N. Thibos, “The prospects for perfect vision,” J. Refractive Surg. 16, S540–S546 (2000).

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[CrossRef] [PubMed]

1999 (2)

R. I. Calver, M. J. Cox, D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[CrossRef]

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

1998 (5)

N. Chateau, A. Blanchard, D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
[CrossRef]

J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
[CrossRef]

T. W. Raasch, I. L. Bailey, M. A. Bullimore, “Repeatability of visual acuity measurement,” Optom. Vision Sci. 75, 342–348 (1998).
[CrossRef]

S. Plainis, W. N. Charman, “On-eye power characteristics of soft contact lenses,” Optom. Vision Sci. 75, 44–54 (1998).
[CrossRef]

W. A. Douthwaite, S. Pardhan, “Surface tilt measured with the EyeSys videokeratoscope: influence on corneal asymmetry,” Invest. Ophthalmol. Visual Sci. 39, 1727–1735 (1998).

1997 (2)

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

J. Z. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

1995 (4)

R. B. Mandell, C. S. Chiang, S. A. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995).
[CrossRef]

T. L. Simpson, D. Regan, “Test–retest variability and correlations between tests of texture processing, motion processing, visual-acuity, and contrast sensitivity,” Optom. Vision Sci. 72, 11–16 (1995).
[CrossRef]

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

D. A. Atchison, “Aberrations associated with rigid contact-lenses,” J. Opt. Soc. Am. A 12, 2267–2273 (1995).
[CrossRef]

1994 (2)

A. Tomlinson, W. H. Ridder, R. Watanabe, “Blink-induced variations in visual performance with toric soft contact-lenses,” Optom. Vision Sci. 71, 545–549 (1994).
[CrossRef]

J. Z. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

1991 (1)

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

1990 (3)

I. Cox, “Theoretical calculation of the longitudinal spherical-aberration of rigid and soft contact-lenses,” Optom. Vision Sci. 67, 277–282 (1990).
[CrossRef]

D. B. Elliott, K. Sanderson, A. Conkey, “The reliability of the Pelli–Robson contrast sensitivity chart,” Ophthalmic Physiol. Opt. 10, 21–24 (1990).
[CrossRef] [PubMed]

I. Cox, B. A. Holden, “Soft contact lens-induced longitudinal spherical-aberration and its effect on contrast sensitivity,” Optom. Vision Sci. 67, 679–683 (1990).
[CrossRef]

1979 (2)

G. T. Bauer, “Longitudinal spherical aberration of soft contact lenses,” Int. Contact Lens Clinics 6, 143–150 (1979).

A. Tomlinson, C. A. Schwartz, “The position of the corneal apex in the normal eye,” Am. J. Optom. Physiol. Opt. 56, 236–240 (1979).
[CrossRef] [PubMed]

1977 (1)

Applegate, R. A.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).

Aragon, J. L.

Artal, P.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

Atchison, D. A.

D. A. Atchison, “Aberrations associated with rigid contact-lenses,” J. Opt. Soc. Am. A 12, 2267–2273 (1995).
[CrossRef]

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, M. J. Cox, “Mathematical treatment of ocular aberrations: a user’s guide,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Bailey, I. L.

T. W. Raasch, I. L. Bailey, M. A. Bullimore, “Repeatability of visual acuity measurement,” Optom. Vision Sci. 75, 342–348 (1998).
[CrossRef]

Baude, D.

Bauer, G. T.

G. T. Bauer, “Longitudinal spherical aberration of soft contact lenses,” Int. Contact Lens Clinics 6, 143–150 (1979).

Benito, A.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

Bille, J. F.

Blanchard, A.

Bouchard, F.

J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
[CrossRef]

Bradley, A.

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

Bullimore, M. A.

T. W. Raasch, I. L. Bailey, M. A. Bullimore, “Repeatability of visual acuity measurement,” Optom. Vision Sci. 75, 342–348 (1998).
[CrossRef]

Burns, S. A.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[CrossRef] [PubMed]

Calver, R. I.

Castejon-Mochon, J. F.

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Charman, W. N.

S. Plainis, W. N. Charman, “On-eye power characteristics of soft contact lenses,” Optom. Vision Sci. 75, 44–54 (1998).
[CrossRef]

Chateau, N.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
[CrossRef]

N. Chateau, A. Blanchard, D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
[CrossRef]

Cheng, X.

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

Chiang, C. S.

R. B. Mandell, C. S. Chiang, S. A. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995).
[CrossRef]

Christensen, J.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Collins, M. J.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Conkey, A.

D. B. Elliott, K. Sanderson, A. Conkey, “The reliability of the Pelli–Robson contrast sensitivity chart,” Ophthalmic Physiol. Opt. 10, 21–24 (1990).
[CrossRef] [PubMed]

Cox, I.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).

I. Cox, B. A. Holden, “Soft contact lens-induced longitudinal spherical-aberration and its effect on contrast sensitivity,” Optom. Vision Sci. 67, 679–683 (1990).
[CrossRef]

I. Cox, “Theoretical calculation of the longitudinal spherical-aberration of rigid and soft contact-lenses,” Optom. Vision Sci. 67, 277–282 (1990).
[CrossRef]

Cox, I. G.

Cox, M. J.

H. H. Dietze, M. J. Cox, “On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power,” Optom. Vision Sci. 80, 126–135 (2003).
[CrossRef]

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vision Sci. 80, 151–158 (2003).
[CrossRef]

R. I. Calver, M. J. Cox, D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[CrossRef]

D. A. Atchison, D. H. Scott, M. J. Cox, “Mathematical treatment of ocular aberrations: a user’s guide,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

de Brabander, J.

J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
[CrossRef]

Dietze, H. H.

H. H. Dietze, M. J. Cox, “On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power,” Optom. Vision Sci. 80, 126–135 (2003).
[CrossRef]

Douthwaite, W. A.

W. A. Douthwaite, S. Pardhan, “Surface tilt measured with the EyeSys videokeratoscope: influence on corneal asymmetry,” Invest. Ophthalmol. Visual Sci. 39, 1727–1735 (1998).

Elliott, D. B.

P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
[CrossRef] [PubMed]

R. I. Calver, M. J. Cox, D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[CrossRef]

D. B. Elliott, K. Sanderson, A. Conkey, “The reliability of the Pelli–Robson contrast sensitivity chart,” Ophthalmic Physiol. Opt. 10, 21–24 (1990).
[CrossRef] [PubMed]

Fermigier, B.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Fujikado, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Gilmartin, B.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
[CrossRef] [PubMed]

Goelz, S.

Gray, L. S.

P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
[CrossRef] [PubMed]

Grimm, B.

Guidollet, S.

J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
[CrossRef]

Guirao, A.

Gwiazda, J. E.

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Hazel, C. A.

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vision Sci. 80, 151–158 (2003).
[CrossRef]

He, J. C.

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[CrossRef] [PubMed]

Held, R.

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Himebaugh, N.

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

Hirohara, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Hofer, H.

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).

Holden, B. A.

I. Cox, B. A. Holden, “Soft contact lens-induced longitudinal spherical-aberration and its effect on contrast sensitivity,” Optom. Vision Sci. 67, 679–683 (1990).
[CrossRef]

Hong, X.

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

Hori, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Howland, B.

Howland, H. C.

Joyeux, D.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Klein, S. A.

R. B. Mandell, C. S. Chiang, S. A. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995).
[CrossRef]

Koh, S.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Kuroda, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Liang, J. Z.

Lo-A-Foe, G.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Lopez-Gil, N.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

Maeda, N.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Mallen, E. A. H.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
[CrossRef] [PubMed]

Mandell, R. B.

R. B. Mandell, C. S. Chiang, S. A. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995).
[CrossRef]

Marcos, S.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[CrossRef] [PubMed]

Marin, G.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Marin, J. M.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

McGraw, P. V.

P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
[CrossRef] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

Mihashi, T.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Miller, D. T.

Pardhan, S.

W. A. Douthwaite, S. Pardhan, “Surface tilt measured with the EyeSys videokeratoscope: influence on corneal asymmetry,” Invest. Ophthalmol. Visual Sci. 39, 1727–1735 (1998).

Pelli, D. G.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Plainis, S.

S. Plainis, W. N. Charman, “On-eye power characteristics of soft contact lenses,” Optom. Vision Sci. 75, 44–54 (1998).
[CrossRef]

Porter, J.

Raasch, T. W.

T. W. Raasch, I. L. Bailey, M. A. Bullimore, “Repeatability of visual acuity measurement,” Optom. Vision Sci. 75, 342–348 (1998).
[CrossRef]

Regan, D.

T. L. Simpson, D. Regan, “Test–retest variability and correlations between tests of texture processing, motion processing, visual-acuity, and contrast sensitivity,” Optom. Vision Sci. 72, 11–16 (1995).
[CrossRef]

Renard, D.

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Ridder, W. H.

A. Tomlinson, W. H. Ridder, R. Watanabe, “Blink-induced variations in visual performance with toric soft contact-lenses,” Optom. Vision Sci. 71, 545–549 (1994).
[CrossRef]

Roorda, A.

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

Salmon, T. O.

Sanderson, K.

D. B. Elliott, K. Sanderson, A. Conkey, “The reliability of the Pelli–Robson contrast sensitivity chart,” Ophthalmic Physiol. Opt. 10, 21–24 (1990).
[CrossRef] [PubMed]

Schwartz, C. A.

A. Tomlinson, C. A. Schwartz, “The position of the corneal apex in the normal eye,” Am. J. Optom. Physiol. Opt. 56, 236–240 (1979).
[CrossRef] [PubMed]

Schwiegerling, J. T.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).

Scott, D. H.

D. A. Atchison, D. H. Scott, M. J. Cox, “Mathematical treatment of ocular aberrations: a user’s guide,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Simpson, T. L.

T. L. Simpson, D. Regan, “Test–retest variability and correlations between tests of texture processing, motion processing, visual-acuity, and contrast sensitivity,” Optom. Vision Sci. 72, 11–16 (1995).
[CrossRef]

Singer, B.

Strang, N. C.

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vision Sci. 80, 151–158 (2003).
[CrossRef]

Sun, P.

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Sun, X. R.

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Tano, Y.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Thibos, L. N.

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

L. N. Thibos, A. Bradley, X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427–433 (2002).
[CrossRef] [PubMed]

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).

T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

L. N. Thibos, “The prospects for perfect vision,” J. Refractive Surg. 16, S540–S546 (2000).

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

Thorn, F.

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

Tomlinson, A.

A. Tomlinson, W. H. Ridder, R. Watanabe, “Blink-induced variations in visual performance with toric soft contact-lenses,” Optom. Vision Sci. 71, 545–549 (1994).
[CrossRef]

A. Tomlinson, C. A. Schwartz, “The position of the corneal apex in the normal eye,” Am. J. Optom. Physiol. Opt. 56, 236–240 (1979).
[CrossRef] [PubMed]

Tsujimura, S.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
[CrossRef] [PubMed]

Watanabe, H.

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Watanabe, R.

A. Tomlinson, W. H. Ridder, R. Watanabe, “Blink-induced variations in visual performance with toric soft contact-lenses,” Optom. Vision Sci. 71, 545–549 (1994).
[CrossRef]

Waterworth, M. D.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Webb, R.

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).

Wildsoet, C. F.

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Williams, D.

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).

Williams, D. R.

Winn, B.

P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
[CrossRef] [PubMed]

Wolffsohn, J. S.

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
[CrossRef] [PubMed]

Yoon, G. Y.

G. Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[CrossRef]

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).

Zhang, L.

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

S. Koh, N. Maeda, T. Kuroda, Y. Hori, H. Watanabe, T. Fujikado, Y. Tano, Y. Hirohara, T. Mihashi, “Effect of tear film break-up on higher-order aberrations measured with wavefront sensor,” Am. J. Ophthalmol. 134, 115–117 (2002).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

A. Tomlinson, C. A. Schwartz, “The position of the corneal apex in the normal eye,” Am. J. Optom. Physiol. Opt. 56, 236–240 (1979).
[CrossRef] [PubMed]

Int. Contact Lens Clinics (1)

G. T. Bauer, “Longitudinal spherical aberration of soft contact lenses,” Int. Contact Lens Clinics 6, 143–150 (1979).

Invest. Ophthalmol. Visual Sci. (2)

W. A. Douthwaite, S. Pardhan, “Surface tilt measured with the EyeSys videokeratoscope: influence on corneal asymmetry,” Invest. Ophthalmol. Visual Sci. 39, 1727–1735 (1998).

J. S. McLellan, S. Marcos, S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Visual Sci. 42, 1390–1395 (2001).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (11)

J. Porter, A. Guirao, I. G. Cox, D. R. Williams, “Monochromatic aberrations of the human eye in a large population,” J. Opt. Soc. Am. A 18, 1793–1803 (2001).
[CrossRef]

N. Chateau, A. Blanchard, D. Baude, “Influence of myopia and aging on the optimal spherical aberration of soft contact lenses,” J. Opt. Soc. Am. A 15, 2589–2596 (1998).
[CrossRef]

A. Guirao, J. Porter, D. R. Williams, I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes,” J. Opt. Soc. Am. A 19, 1–9 (2002).
[CrossRef]

J. Z. Liang, D. R. Williams, D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

G. Y. Yoon, D. R. Williams, “Visual performance after correcting the monochromatic and chromatic aberrations of the eye,” J. Opt. Soc. Am. A 19, 266–275 (2002).
[CrossRef]

L. N. Thibos, X. Hong, A. Bradley, X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002).
[CrossRef]

J. Z. Liang, B. Grimm, S. Goelz, J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor,” J. Opt. Soc. Am. A 11, 1949–1957 (1994).
[CrossRef]

T. O. Salmon, L. N. Thibos, “Videokeratoscope-line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
[CrossRef]

D. A. Atchison, “Aberrations associated with rigid contact-lenses,” J. Opt. Soc. Am. A 12, 2267–2273 (1995).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragon, D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18, 497–506 (2001).
[CrossRef]

R. I. Calver, M. J. Cox, D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16, 2069–2078 (1999).
[CrossRef]

J. Refractive Surg. (4)

L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, R. Webb, “Standards for reporting the optical aberrations of eyes,” J. Refractive Surg. 18, S652–S660 (2002).

L. N. Thibos, “The prospects for perfect vision,” J. Refractive Surg. 16, S540–S546 (2000).

D. Williams, G. Y. Yoon, J. Porter, A. Guirao, H. Hofer, I. Cox, “Visual benefit of correcting higher order aberrations of the eye,” J. Refractive Surg. 16, S554–S559 (2000).

N. Lopez-Gil, J. F. Castejon-Mochon, A. Benito, J. M. Marin, G. Lo-A-Foe, G. Marin, B. Fermigier, D. Renard, D. Joyeux, N. Chateau, P. Artal, “Aberration generation by contact lenses with aspheric and asymmetric surfaces,” J. Refractive Surg. 18, S603–S609 (2002).

Nature (London) (1)

A. Roorda, D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature (London) 397, 520–522 (1999).
[CrossRef]

Ophthalmic Physiol. Opt. (4)

P. V. McGraw, B. Winn, L. S. Gray, D. B. Elliott, “Improving the reliability of visual acuity measures in young children,” Ophthalmic Physiol. Opt. 20, 173–184 (2000).
[CrossRef] [PubMed]

E. A. H. Mallen, J. S. Wolffsohn, B. Gilmartin, S. Tsujimura, “Clinical evaluation of the Shin–Nippon SRW-5000 autorefractor in adults,” Ophthalmic Physiol. Opt. 21, 101–107 (2001).
[CrossRef] [PubMed]

D. B. Elliott, K. Sanderson, A. Conkey, “The reliability of the Pelli–Robson contrast sensitivity chart,” Ophthalmic Physiol. Opt. 10, 21–24 (1990).
[CrossRef] [PubMed]

L. N. Thibos, A. Bradley, X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiol. Opt. 22, 427–433 (2002).
[CrossRef] [PubMed]

Optom. Vision Sci. (13)

T. L. Simpson, D. Regan, “Test–retest variability and correlations between tests of texture processing, motion processing, visual-acuity, and contrast sensitivity,” Optom. Vision Sci. 72, 11–16 (1995).
[CrossRef]

I. Cox, “Theoretical calculation of the longitudinal spherical-aberration of rigid and soft contact-lenses,” Optom. Vision Sci. 67, 277–282 (1990).
[CrossRef]

R. B. Mandell, C. S. Chiang, S. A. Klein, “Location of the major corneal reference points,” Optom. Vision Sci. 72, 776–784 (1995).
[CrossRef]

A. Tomlinson, W. H. Ridder, R. Watanabe, “Blink-induced variations in visual performance with toric soft contact-lenses,” Optom. Vision Sci. 71, 545–549 (1994).
[CrossRef]

X. Cheng, A. Bradley, X. Hong, L. N. Thibos, “Relationship between refractive error and monochromatic aberrations of the eye,” Optom. Vision Sci. 80, 43–49 (2003).
[CrossRef]

T. W. Raasch, I. L. Bailey, M. A. Bullimore, “Repeatability of visual acuity measurement,” Optom. Vision Sci. 75, 342–348 (1998).
[CrossRef]

C. A. Hazel, M. J. Cox, N. C. Strang, “Wavefront aberration and its relationship to the accommodative stimulus-response function in myopic subjects,” Optom. Vision Sci. 80, 151–158 (2003).
[CrossRef]

S. Plainis, W. N. Charman, “On-eye power characteristics of soft contact lenses,” Optom. Vision Sci. 75, 44–54 (1998).
[CrossRef]

L. N. Thibos, A. Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vision Sci. 74, 581–587 (1997).
[CrossRef]

I. Cox, B. A. Holden, “Soft contact lens-induced longitudinal spherical-aberration and its effect on contrast sensitivity,” Optom. Vision Sci. 67, 679–683 (1990).
[CrossRef]

X. Hong, N. Himebaugh, L. N. Thibos, “On-eye evaluation of optical performance of rigid and soft contact lenses,” Optom. Vision Sci. 78, 872–880 (2001).
[CrossRef]

H. H. Dietze, M. J. Cox, “On- and off-eye spherical aberration of soft contact lenses and consequent changes of effective lens power,” Optom. Vision Sci. 80, 126–135 (2003).
[CrossRef]

J. de Brabander, N. Chateau, F. Bouchard, S. Guidollet, “Contrast sensitivity with soft contact lenses compensated for spherical aberration in high ametropia,” Optom. Vision Sci. 75, 37–43 (1998).
[CrossRef]

Vision Res. (5)

J. F. Castejon-Mochon, N. Lopez-Gil, A. Benito, P. Artal, “Ocular wave-front aberration statistics in a normal young population,” Vision Res. 42, 1611–1617 (2002).
[CrossRef] [PubMed]

D. G. Pelli, L. Zhang, “Accurate control of contrast on microcomputer displays,” Vision Res. 31, 1337–1350 (1991).
[CrossRef] [PubMed]

J. C. He, P. Sun, R. Held, F. Thorn, X. R. Sun, J. E. Gwiazda, “Wavefront aberrations in eyes of emmetropic and moderately myopic school children and young adults,” Vision Res. 42, 1063–1070 (2002).
[CrossRef] [PubMed]

J. C. He, S. A. Burns, S. Marcos, “Monochromatic aberrations in the accommodated human eye,” Vision Res. 40, 41–48 (2000).
[CrossRef] [PubMed]

D. A. Atchison, M. J. Collins, C. F. Wildsoet, J. Christensen, M. D. Waterworth, “Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique,” Vision Res. 35, 313–323 (1995).
[CrossRef] [PubMed]

Other (1)

D. A. Atchison, D. H. Scott, M. J. Cox, “Mathematical treatment of ocular aberrations: a user’s guide,” in Vision Science and Its Applications, V. Lakshminarayanan, ed., Vol. 35 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 110–130.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Orthonormal C40 Zernike coefficients representing third-order SA. Pupil diameter is that measured when viewing a logMAR visual acuity chart at a luminance of 100 cd m-2. (a) Mean C40 for each condition tested: Open, ocular SA; diagonal lines, standard SCL; crossed diagonal lines, custom-made SCL; horizontal lines, aberration-free SCL. The error bars represent 1 standard error. (b)–(d) C40 for each subject plotted against contact lens power. For each contact lens design [standard SCL (b), custom-made SCL (c), aberration-free SCL (d)], the unticked end of the line represents the ocular SA and the ticked end of the line represents the eye+SCL SA.

Fig. 2
Fig. 2

Same as Fig. 1, but with pupil diameters measured when viewing a 17-cd m-2 mean luminance sinusoidal grating and background.

Fig. 3
Fig. 3

Strehl intensity ratios and rms WFA produced under the different correction conditions: open, ocular SA; diagonal lines, standard SCL; crossed diagonal lines, custom-made SCL; horizontal lines, aberration-free SCL; vertical lines, 0.25-D spherical defocus. (a) Strehl intensity ratios based on all higher-order aberrations, grouped by pupil size. (b)–(d) rms WFA, grouped by orders: (b) for pupils corresponding to logMAR measurement conditions (photopic), (c) for pupils corresponding to contrast sensitivity measurement conditions (low photopic), (d) for pupil diameters standardized at 6 mm. Astigmatism and defocus are set to 0 and do not contribute to any of the optical quality metrics shown in the figure. The error bars represent 1 positive standard error.

Fig. 4
Fig. 4

Visual acuity (logMAR). (a) Average visual acuity for all conditions tested: open, ocular SA; diagonal lines, standard SCL; crossed diagonal lines, custom-made SCL; horizontal lines, aberration-free SCL. Error bars represent 1 negative standard error. (b)–(d) Individual visual acuity for each subject plotted against contact lens power. For each contact lens design [standard SCL (b), custom-made SCL (c), aberration-free SCL (d)], the unticked end of the line represents the visual acuity with a spectacle lens correction only and the ticked end of the line represents the visual acuity with an SCL correction. For all contact lenses on eye, the visual acuity was measured with the optimum overcorrection.

Fig. 5
Fig. 5

Effect of optical quality changes on visual acuity. (a) Change (from the spectacle correction condition) in logMAR visual acuity versus change in absolute value of C40 for the three SCL types [standard SCL (□), custom-made SCL (○), aberration-free SCL (△)]. (b) Change in logMAR visual acuity versus change in Strehl ratio for the three SCL types. Pupil sizes used for the optical metrics were those measured under visual acuity measurement conditions. The solid lines are the regression lines fitted through the combined data.

Fig. 6
Fig. 6

Effect of optical quality changes on contrast sensitivity. Horizontal grating contrast sensitivity is shown in the left panels [(a), (c), (e)], and vertical sensitivity in the right panels [(b), (d), (f)]. The mean log contrast sensitivities for 6, 12, and 24 cycles/degree for each of the lens types is shown in the upper panels [(a), (b)]: open, ocular SA; diagonal lines, standard SCL; crossed diagonal lines, custom-made SCL; horizontal lines, aberration-free SCL. Error bars represent 1 standard error. The change in log contrast sensitivity and the associated change in the C40 coefficient for the different lenses is shown in the middle panels [(c), (d)]. The change in log contrast sensitivity and the associated change in Strehl ratio for the different lenses is shown in the lower panels [(e), (f)]: standard SCL (□), custom-made SCL (○), aberration-free SCL (△). Pupil sizes used for the optical metrics were those measured under contrast sensitivity measurement conditions. The solid lines are the regression lines fitted through the combined data.

Fig. 7
Fig. 7

Correlation data between C40 coefficients measured on a lens holder versus those found on the eye for (a) standard, (b) custom-made, and (c) aberration-free SCLs. Pupil diameter is fixed at 6 mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C4(SCL)0=C4(Eye+SCL)0-C4(Eye)0,
log MARS=log(MAR×m),
C4(custom)0=-C4(eye)0,
C4(SCL)0=C4(system)0-C4(button)0,

Metrics