J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

Y. Shifman, Y. Leviatan, “Analysis of transient interaction of electromagnetic pulse with an air layer in a dielectric medium using wavelet-based implicit tdie formulation,” IEEE Trans. Microwave Theory Tech. 50, 2018–2022 (2002).

[CrossRef]

O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002).

[CrossRef]

L. Shen, S. He, “Analysis for the convergence problem of the plane-wave expansion method for photonic crystals,” J. Opt. Soc. Am. A 19, 1021–1024 (2002).

[CrossRef]

A. Yariv, “Coupled-wave formalism for optical waveguiding by transverse Bragg reflection,” Opt. Lett. 27, 936–938 (2002).

[CrossRef]

Y. Shifman, Y. Leviatan, “On the use of spatiotemporal multiresolution analysis in method of moments solutions for the time-domain integral equation,” IEEE Trans. Antennas Propag. 49, 1123–1129 (2001).

[CrossRef]

B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000).

[CrossRef]

A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag.August1999, pp. 39–52.

S. M. Rao, D. A. Vechinski, T. K. Sarkar, “Transient scattering by conducting cylinders—implicit solution for the transverse electric case,” Microwave Opt. Technol. Lett. 21, 129–134 (1999).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique,” Microwave Opt. Technol. Lett. 17, 66–69 (1998).

[CrossRef]

M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998).

[CrossRef]

A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998).

[CrossRef]

S. J. Dodson, S. P. Walker, M. J. Bluck, “Implicitness and stability of time domain integral equation scattering analysis,” J. Appl. Comput. Electromag. Soc. 13, 291–301 (1998).

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet-basis,” IEEE Trans. Antennas Propag. 46, 226–233 (1998).

[CrossRef]

Z. Baharav, Y. Leviatan, “Wavelets in electromagnetics: the impedance matrix compression (IMC) method,” Int. J. Num. Model. 11, 69–84 (1998).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme—TM incident,” Microwave Opt. Technol. Lett. 15, 342–347 (1997).

[CrossRef]

P. J. Davies, “On the stability of time-marching schemes for the general surface electric-field integral equation,” IEEE Trans. Antennas Propag. 44, 1467–1473 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression with the use of wavelet expansions,” Microwave Opt. Technol. Lett. 12, 268–272 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression using adaptively-constructed basis functions,” IEEE Trans. Antennas Propag. 44, 1231–1238 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations,” Microwave Opt. Technol. Lett. 12, 145–150 (1996).

[CrossRef]

E. K. Miller, “Time domain modeling in electromagnetics,” J. Electron. Waves Appl. 8, 1125–1172 (1994).

[CrossRef]

D. A. Vechinski, S. M. Rao, “Transient scattering from two-dimensional dielectric cylinders and arbitrary shape,” IEEE Trans. Antennas Propag. 40, 1054–1060 (1992).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “A novel technique to the solution of transient electromagnetic scattering from thin wires,” IEEE Trans. Antennas Propag. AP-34, 630–634 (1986).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “The application of the conjugate gradient method to solution of transient electromagnetic scattering from thin wires,” Radio Sci. 19, 1319–1326 (1984).

[CrossRef]

O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002).

[CrossRef]

B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet-basis,” IEEE Trans. Antennas Propag. 46, 226–233 (1998).

[CrossRef]

Z. Baharav, Y. Leviatan, “Wavelets in electromagnetics: the impedance matrix compression (IMC) method,” Int. J. Num. Model. 11, 69–84 (1998).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression with the use of wavelet expansions,” Microwave Opt. Technol. Lett. 12, 268–272 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression using adaptively-constructed basis functions,” IEEE Trans. Antennas Propag. 44, 1231–1238 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations,” Microwave Opt. Technol. Lett. 12, 145–150 (1996).

[CrossRef]

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998).

[CrossRef]

S. J. Dodson, S. P. Walker, M. J. Bluck, “Implicitness and stability of time domain integral equation scattering analysis,” J. Appl. Comput. Electromag. Soc. 13, 291–301 (1998).

W. Pinello, A. Ruehli, A. Cangellaris, “Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models,” in Digest of IEEE–APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2, pp. 966–969.

R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw-Hill, New York, 1996).

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002).

[CrossRef]

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).

P. J. Davies, “On the stability of time-marching schemes for the general surface electric-field integral equation,” IEEE Trans. Antennas Propag. 44, 1467–1473 (1996).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “A novel technique to the solution of transient electromagnetic scattering from thin wires,” IEEE Trans. Antennas Propag. AP-34, 630–634 (1986).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “The application of the conjugate gradient method to solution of transient electromagnetic scattering from thin wires,” Radio Sci. 19, 1319–1326 (1984).

[CrossRef]

S. J. Dodson, S. P. Walker, M. J. Bluck, “Implicitness and stability of time domain integral equation scattering analysis,” J. Appl. Comput. Electromag. Soc. 13, 291–301 (1998).

B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000).

[CrossRef]

A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag.August1999, pp. 39–52.

A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998).

[CrossRef]

E. Michielssen, A. A. Ergin, B. Shanker, “Computational complexity and implementation of two-level plane wave time domain algorithm for scalar wave equation,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 944–947.

J. Garrett, A. Ruehli, C. Paul, “Stability improvements of integral equations,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 3, pp. 1810–1813.

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

Y. Shifman, Y. Leviatan, “Analysis of transient interaction of electromagnetic pulse with an air layer in a dielectric medium using wavelet-based implicit tdie formulation,” IEEE Trans. Microwave Theory Tech. 50, 2018–2022 (2002).

[CrossRef]

Y. Shifman, Y. Leviatan, “On the use of spatiotemporal multiresolution analysis in method of moments solutions for the time-domain integral equation,” IEEE Trans. Antennas Propag. 49, 1123–1129 (2001).

[CrossRef]

Z. Baharav, Y. Leviatan, “Wavelets in electromagnetics: the impedance matrix compression (IMC) method,” Int. J. Num. Model. 11, 69–84 (1998).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet-basis,” IEEE Trans. Antennas Propag. 46, 226–233 (1998).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression with the use of wavelet expansions,” Microwave Opt. Technol. Lett. 12, 268–272 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations,” Microwave Opt. Technol. Lett. 12, 145–150 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression using adaptively-constructed basis functions,” IEEE Trans. Antennas Propag. 44, 1231–1238 (1996).

[CrossRef]

O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002).

[CrossRef]

M. Lu, E. Michielssen, “Closed form evaluation of time domain fields due to rao-wilton-glisson sources for use in marching-on-in-time based EFIE solvers,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 74–77.

B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000).

[CrossRef]

A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag.August1999, pp. 39–52.

A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998).

[CrossRef]

E. Michielssen, A. A. Ergin, B. Shanker, “Computational complexity and implementation of two-level plane wave time domain algorithm for scalar wave equation,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 944–947.

M. Lu, E. Michielssen, “Closed form evaluation of time domain fields due to rao-wilton-glisson sources for use in marching-on-in-time based EFIE solvers,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 74–77.

D. S. Weile, C. Nan-Wei, B. Shanker, E. Michielssen, “An accurate time-marching solution method for the electric field integral equation using a bandlimited extrapolator,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 162–165.

D. S. Weile, B. Shanker, E. Michielssen, “An accurate scheme for the numerical solution of the time domain electric field integral equation,” in Proceedings of 2001 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 4, pp. 516–519.

E. K. Miller, “Time domain modeling in electromagnetics,” J. Electron. Waves Appl. 8, 1125–1172 (1994).

[CrossRef]

R. Mittra, “Integral equation methods for transient scattering,” in Transient Electromagnetic Fields, Vol. 10 of Topics in Applied Physics, L. B. Felsen, ed. (Springer-Verlag, Berlin, 1976), pp. 73–128.

[CrossRef]

D. S. Weile, C. Nan-Wei, B. Shanker, E. Michielssen, “An accurate time-marching solution method for the electric field integral equation using a bandlimited extrapolator,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 162–165.

G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley–Cambridge Press, Wellesley, Mass., 1996).

J. Garrett, A. Ruehli, C. Paul, “Stability improvements of integral equations,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 3, pp. 1810–1813.

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

W. Pinello, A. Ruehli, A. Cangellaris, “Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models,” in Digest of IEEE–APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2, pp. 966–969.

M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

S. M. Rao, D. A. Vechinski, T. K. Sarkar, “Transient scattering by conducting cylinders—implicit solution for the transverse electric case,” Microwave Opt. Technol. Lett. 21, 129–134 (1999).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique,” Microwave Opt. Technol. Lett. 17, 66–69 (1998).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme—TM incident,” Microwave Opt. Technol. Lett. 15, 342–347 (1997).

[CrossRef]

D. A. Vechinski, S. M. Rao, “Transient scattering from two-dimensional dielectric cylinders and arbitrary shape,” IEEE Trans. Antennas Propag. 40, 1054–1060 (1992).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “A novel technique to the solution of transient electromagnetic scattering from thin wires,” IEEE Trans. Antennas Propag. AP-34, 630–634 (1986).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “The application of the conjugate gradient method to solution of transient electromagnetic scattering from thin wires,” Radio Sci. 19, 1319–1326 (1984).

[CrossRef]

W. Pinello, A. Ruehli, A. Cangellaris, “Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models,” in Digest of IEEE–APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2, pp. 966–969.

J. Garrett, A. Ruehli, C. Paul, “Stability improvements of integral equations,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 3, pp. 1810–1813.

S. M. Rao, D. A. Vechinski, T. K. Sarkar, “Transient scattering by conducting cylinders—implicit solution for the transverse electric case,” Microwave Opt. Technol. Lett. 21, 129–134 (1999).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique,” Microwave Opt. Technol. Lett. 17, 66–69 (1998).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme—TM incident,” Microwave Opt. Technol. Lett. 15, 342–347 (1997).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “A novel technique to the solution of transient electromagnetic scattering from thin wires,” IEEE Trans. Antennas Propag. AP-34, 630–634 (1986).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “The application of the conjugate gradient method to solution of transient electromagnetic scattering from thin wires,” Radio Sci. 19, 1319–1326 (1984).

[CrossRef]

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000).

[CrossRef]

A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag.August1999, pp. 39–52.

A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998).

[CrossRef]

E. Michielssen, A. A. Ergin, B. Shanker, “Computational complexity and implementation of two-level plane wave time domain algorithm for scalar wave equation,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 944–947.

D. S. Weile, B. Shanker, E. Michielssen, “An accurate scheme for the numerical solution of the time domain electric field integral equation,” in Proceedings of 2001 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 4, pp. 516–519.

D. S. Weile, C. Nan-Wei, B. Shanker, E. Michielssen, “An accurate time-marching solution method for the electric field integral equation using a bandlimited extrapolator,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 162–165.

Y. Shifman, Y. Leviatan, “Analysis of transient interaction of electromagnetic pulse with an air layer in a dielectric medium using wavelet-based implicit tdie formulation,” IEEE Trans. Microwave Theory Tech. 50, 2018–2022 (2002).

[CrossRef]

Y. Shifman, Y. Leviatan, “On the use of spatiotemporal multiresolution analysis in method of moments solutions for the time-domain integral equation,” IEEE Trans. Antennas Propag. 49, 1123–1129 (2001).

[CrossRef]

Y. Shifman, “Spatio-temporal multiresolution analysis for efficient method of moments solutions of transient electro-magnetic wave scattering,” Ph.D. thesis (Technion–Israel Institute of Technology, Haifa, Israel, 2002).

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley–Cambridge Press, Wellesley, Mass., 1996).

O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002).

[CrossRef]

S. M. Rao, D. A. Vechinski, T. K. Sarkar, “Transient scattering by conducting cylinders—implicit solution for the transverse electric case,” Microwave Opt. Technol. Lett. 21, 129–134 (1999).

[CrossRef]

D. A. Vechinski, S. M. Rao, “Transient scattering from two-dimensional dielectric cylinders and arbitrary shape,” IEEE Trans. Antennas Propag. 40, 1054–1060 (1992).

[CrossRef]

M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998).

[CrossRef]

S. J. Dodson, S. P. Walker, M. J. Bluck, “Implicitness and stability of time domain integral equation scattering analysis,” J. Appl. Comput. Electromag. Soc. 13, 291–301 (1998).

D. S. Weile, C. Nan-Wei, B. Shanker, E. Michielssen, “An accurate time-marching solution method for the electric field integral equation using a bandlimited extrapolator,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 162–165.

D. S. Weile, B. Shanker, E. Michielssen, “An accurate scheme for the numerical solution of the time domain electric field integral equation,” in Proceedings of 2001 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 4, pp. 516–519.

A. A. Ergin, B. Shanker, E. Michielssen, “The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena,” IEEE Antennas Propag. Mag.August1999, pp. 39–52.

O. Vanbesien, T. Akalin, J. Danglot, D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Perot type cavity,” IEEE Microw. Wire. Compon. Lett. 12, 48–50 (2002).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet-basis,” IEEE Trans. Antennas Propag. 46, 226–233 (1998).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “A novel technique to the solution of transient electromagnetic scattering from thin wires,” IEEE Trans. Antennas Propag. AP-34, 630–634 (1986).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression using adaptively-constructed basis functions,” IEEE Trans. Antennas Propag. 44, 1231–1238 (1996).

[CrossRef]

Y. Shifman, Y. Leviatan, “On the use of spatiotemporal multiresolution analysis in method of moments solutions for the time-domain integral equation,” IEEE Trans. Antennas Propag. 49, 1123–1129 (2001).

[CrossRef]

B. Shanker, A. A. Ergin, K. Aygun, E. Michielssen, “Analysis of transient electromagnetic scattering phenomena using a two-level plane wave time-domain algorithm,” IEEE Trans. Antennas Propag. 48, 510–523 (2000).

[CrossRef]

D. A. Vechinski, S. M. Rao, “Transient scattering from two-dimensional dielectric cylinders and arbitrary shape,” IEEE Trans. Antennas Propag. 40, 1054–1060 (1992).

[CrossRef]

P. J. Davies, “On the stability of time-marching schemes for the general surface electric-field integral equation,” IEEE Trans. Antennas Propag. 44, 1467–1473 (1996).

[CrossRef]

M. D. Pocock, M. J. Bluck, S. P. Walker, “Electromagnetic scattering from 3-D curved dielectric bodies using time-domain integral equations,” IEEE Trans. Antennas Propag. 46, 1212–1219 (1998).

[CrossRef]

Y. Shifman, Y. Leviatan, “Analysis of transient interaction of electromagnetic pulse with an air layer in a dielectric medium using wavelet-based implicit tdie formulation,” IEEE Trans. Microwave Theory Tech. 50, 2018–2022 (2002).

[CrossRef]

Z. Baharav, Y. Leviatan, “Wavelets in electromagnetics: the impedance matrix compression (IMC) method,” Int. J. Num. Model. 11, 69–84 (1998).

[CrossRef]

S. J. Dodson, S. P. Walker, M. J. Bluck, “Implicitness and stability of time domain integral equation scattering analysis,” J. Appl. Comput. Electromag. Soc. 13, 291–301 (1998).

A. A. Ergin, B. Shanker, E. Michielssen, “Fast evaluation of three-dimensional transient wave fields using diagonal translation operators,” J. Comput. Phys. 146, 157–180 (1998).

[CrossRef]

E. K. Miller, “Time domain modeling in electromagnetics,” J. Electron. Waves Appl. 8, 1125–1172 (1994).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Time-domain modeling of two-dimensional conducting cylinders utilizing an implicit scheme—TM incident,” Microwave Opt. Technol. Lett. 15, 342–347 (1997).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression with the use of wavelet expansions,” Microwave Opt. Technol. Lett. 12, 268–272 (1996).

[CrossRef]

Z. Baharav, Y. Leviatan, “Impedance matrix compression (IMC) using iteratively selected wavelet basis for MFIE formulations,” Microwave Opt. Technol. Lett. 12, 145–150 (1996).

[CrossRef]

S. M. Rao, T. K. Sarkar, “Transient analysis of electromagnetic scattering from wire structures utilizing an implicit time-domain integral-equation technique,” Microwave Opt. Technol. Lett. 17, 66–69 (1998).

[CrossRef]

S. M. Rao, D. A. Vechinski, T. K. Sarkar, “Transient scattering by conducting cylinders—implicit solution for the transverse electric case,” Microwave Opt. Technol. Lett. 21, 129–134 (1999).

[CrossRef]

J. Ctyroky, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J. P. Hugonin, R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 286 modelling task,” Opt. Quantum Electron. 34, 445–470 (2002).

[CrossRef]

S. M. Rao, T. K. Sarkar, S. A. Dianat, “The application of the conjugate gradient method to solution of transient electromagnetic scattering from thin wires,” Radio Sci. 19, 1319–1326 (1984).

[CrossRef]

E. Michielssen, A. A. Ergin, B. Shanker, “Computational complexity and implementation of two-level plane wave time domain algorithm for scalar wave equation,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 944–947.

I. Daubechies, Ten Lectures on Wavelets (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1992).

G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley–Cambridge Press, Wellesley, Mass., 1996).

J. Garrett, A. Ruehli, C. Paul, “Stability improvements of integral equations,” in Digest of IEEE-APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 3, pp. 1810–1813.

W. Pinello, A. Ruehli, A. Cangellaris, “Stabilization of time domain solutions of EFIE based on partial element equivalent circuit models,” in Digest of IEEE–APS International Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), Vol. 2, pp. 966–969.

D. S. Weile, B. Shanker, E. Michielssen, “An accurate scheme for the numerical solution of the time domain electric field integral equation,” in Proceedings of 2001 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2001), Vol. 4, pp. 516–519.

D. S. Weile, C. Nan-Wei, B. Shanker, E. Michielssen, “An accurate time-marching solution method for the electric field integral equation using a bandlimited extrapolator,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 162–165.

M. Lu, E. Michielssen, “Closed form evaluation of time domain fields due to rao-wilton-glisson sources for use in marching-on-in-time based EFIE solvers,” in Proceedings of 2002 IEEE Antennas and Propagation Society International Symposium (Institute of Electrical and Electronics Engineers, New York, 2002), Vol. 2, pp. 74–77.

G. Springholz, T. Schwarzl, W. Heiss, H. Seyringer, S. Lanzerstorfer, H. Krenn, “Fabrication of highly efficient mid-infrared Bragg mirrors from IV–VI semiconductors,” in Proceedings of Current Developments of Microelectronics (Society for Microelectronics, Bad Hofgastein, Austria, 1999), pp. 71–74.

Y. Shifman, “Spatio-temporal multiresolution analysis for efficient method of moments solutions of transient electro-magnetic wave scattering,” Ph.D. thesis (Technion–Israel Institute of Technology, Haifa, Israel, 2002).

R. E. Collin, Foundations for Microwave Engineering, 2nd ed. (McGraw-Hill, New York, 1996).

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989).

R. F. Harrington, Field Computation by Moment Methods (Macmillan, New York, 1968).

R. Mittra, “Integral equation methods for transient scattering,” in Transient Electromagnetic Fields, Vol. 10 of Topics in Applied Physics, L. B. Felsen, ed. (Springer-Verlag, Berlin, 1976), pp. 73–128.

[CrossRef]