Abstract

Anterior corneal and internal component contributions to overall peripheral aberrations of five human eyes were determined, based on corneal topography and overall aberration measurements. Anterior corneal position and orientation (tilt) were referenced to the line of sight. Ray tracing was performed through the anterior cornea for 6-mm-diameter pupils at angles out to 40° in both the temporal and the nasal visual fields. In general, both component and overall Zernike aberrations were greater for the nasal than for the temporal visual field. In general, the anterior corneal aberration components were considerably higher than the overall aberrations across the visual field and were balanced to a considerable degree by the internal ocular aberration components. The component and overall levels of Zernike third-order aberrations showed linear trends away from the fixation axis, and the component levels of Zernike fourth-order aberrations showed quadratic trends away from the fixation axis. The second-order, but not higher-order, aberration components were susceptible to the choice of image radius of curvature, while disregarding corneal position and orientation affected second- and higher-order aberration components.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Navarro, E. Moreno, C. Dorronsoro, “Monochromatic aberrations and point-spread functions of the human eye across the visual field,” J. Opt. Soc. Am. A 15, 2522–2529 (1998).
    [CrossRef]
  2. A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
    [CrossRef] [PubMed]
  3. D. A. Atchison, D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19, 2180–2184 (2002).
    [CrossRef]
  4. T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
    [PubMed]
  5. S. G. El Hage, F. Berny, “Contribution of crystalline lens to the spherical aberration of the eye,” J. Opt. Soc. Am. 63, 205–211 (1973).
    [CrossRef]
  6. M. Millodot, J. Sivak, “Contribution of the cornea and lens to spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
    [CrossRef]
  7. J. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
    [CrossRef] [PubMed]
  8. P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
    [CrossRef]
  9. S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).
  10. P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
    [CrossRef]
  11. S. Barbero, S. Marcos, J. M. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263–270 (2002).
    [PubMed]
  12. P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).
  13. T. O. Salmon, L. N. Thibos, “Videokeratoscope–line-of-sight misalignment and its effect on measurements of corneal and internal ocular aberrations,” J. Opt. Soc. Am. A 19, 657–669 (2002).
    [CrossRef]
  14. L. M. Llorente, S. Marcos, S. Barbero, J. Merayo-Lloves, “How total and corneal aberrations change with standard Lasik surgery for hyperopia,” Presented at the 2002 Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2002), Fort Lauderdale, Fla., May 7, 2002, 2066 Poster Board No. B63.
  15. L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).
  16. D. A. Atchison, D. H. Scott, W. N. Charman, “Hartmann–Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20, 965–973 (2003).
    [CrossRef]
  17. D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), pp. 147–149, 173–176.
  18. R. Navarro, J. Santamaría, J. Bescós, “Accommodation-dependent model of the human eye with aspherics,” J. Opt. Soc. Am. A 2, 1273–1281 (1985).
    [CrossRef] [PubMed]
  19. I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
    [CrossRef]

2003 (1)

2002 (4)

2001 (2)

P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

1999 (2)

I. Escudero-Sanz, R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881–1891 (1999).
[CrossRef]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

1998 (2)

1985 (1)

1983 (1)

J. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

1979 (1)

M. Millodot, J. Sivak, “Contribution of the cornea and lens to spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

1973 (1)

1963 (1)

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Albietz, J. M.

L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).

Artal, P.

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

Atchison, D. A.

D. A. Atchison, D. H. Scott, W. N. Charman, “Hartmann–Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20, 965–973 (2003).
[CrossRef]

D. A. Atchison, D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19, 2180–2184 (2002).
[CrossRef]

L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).

D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), pp. 147–149, 173–176.

Barbero, S.

S. Barbero, S. Marcos, J. M. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

L. M. Llorente, S. Marcos, S. Barbero, J. Merayo-Lloves, “How total and corneal aberrations change with standard Lasik surgery for hyperopia,” Presented at the 2002 Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2002), Fort Lauderdale, Fla., May 7, 2002, 2066 Poster Board No. B63.

Berny, F.

Berrio, E.

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

Bescós, J.

Charman, W. N.

Dorronsoro, C.

El Hage, S. G.

Escudero-Sanz, I.

Guirao, A.

P. Artal, E. Berrio, A. Guirao, P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19, 137–143 (2002).
[CrossRef]

P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

P. Artal, A. Guirao, “Contribution of the cornea and lens to the aberrations of the human eye,” Opt. Lett. 23, 1713–1715 (1998).
[CrossRef]

Jenkins, T. C. A.

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Kreuzer, R. O.

J. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

Lenton, L. M.

L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).

Llorente, L.

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

Llorente, L. M.

L. M. Llorente, S. Marcos, S. Barbero, J. Merayo-Lloves, “How total and corneal aberrations change with standard Lasik surgery for hyperopia,” Presented at the 2002 Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2002), Fort Lauderdale, Fla., May 7, 2002, 2066 Poster Board No. B63.

Ma, L.

L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).

Marcos, S.

S. Barbero, S. Marcos, J. M. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

L. M. Llorente, S. Marcos, S. Barbero, J. Merayo-Lloves, “How total and corneal aberrations change with standard Lasik surgery for hyperopia,” Presented at the 2002 Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2002), Fort Lauderdale, Fla., May 7, 2002, 2066 Poster Board No. B63.

McLennan, S. G.

L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).

Merayo-Lloves, J.

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

L. M. Llorente, S. Marcos, S. Barbero, J. Merayo-Lloves, “How total and corneal aberrations change with standard Lasik surgery for hyperopia,” Presented at the 2002 Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2002), Fort Lauderdale, Fla., May 7, 2002, 2066 Poster Board No. B63.

Merayo-Lloves, J. M.

S. Barbero, S. Marcos, J. M. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

Millodot, M.

M. Millodot, J. Sivak, “Contribution of the cornea and lens to spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

Moreno, E.

Moreno-Barriuso, E.

S. Barbero, S. Marcos, J. M. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

Navarro, R.

Piers, P.

Salmon, T. O.

Santamaría, J.

Scott, D. H.

Sivak, J.

J. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

M. Millodot, J. Sivak, “Contribution of the cornea and lens to spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

Smith, G.

D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), pp. 147–149, 173–176.

Thibos, L. N.

Williams, D.

P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

Br. J. Physiol. Opt. (1)

T. C. A. Jenkins, “Aberrations of the eye and their effects on vision: part 1,” Br. J. Physiol. Opt. 20, 59–91 (1963).
[PubMed]

Invest. Ophthalmol. Visual Sci. (1)

S. Marcos, S. Barbero, L. Llorente, J. Merayo-Lloves, “Optical response to myopic LASIK surgery from total and corneal aberration measurements,” Invest. Ophthalmol. Visual Sci. 42, 3349–3356 (2001).

J. Math. Imaging Vision (1)

P. Artal, A. Guirao, E. Berrio, D. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Math. Imaging Vision 1, 1–8 (2001).

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (7)

J. Refract. Surg. (1)

S. Barbero, S. Marcos, J. M. Merayo-Lloves, E. Moreno-Barriuso, “Validation of the estimation of corneal aberrations from videokeratography: a test on keratoconus eyes,” J. Refract. Surg. 18, 263–270 (2002).
[PubMed]

Opt. Lett. (1)

Vision Res. (3)

M. Millodot, J. Sivak, “Contribution of the cornea and lens to spherical aberration of the eye,” Vision Res. 19, 685–687 (1979).
[CrossRef]

J. Sivak, R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59–70 (1983).
[CrossRef] [PubMed]

A. Guirao, P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39, 207–217 (1999).
[CrossRef] [PubMed]

Other (3)

L. M. Llorente, S. Marcos, S. Barbero, J. Merayo-Lloves, “How total and corneal aberrations change with standard Lasik surgery for hyperopia,” Presented at the 2002 Annual Meeting of the Association for Research in Vision and Ophthalmology (ARVO 2002), Fort Lauderdale, Fla., May 7, 2002, 2066 Poster Board No. B63.

L. Ma, D. A. Atchison, J. M. Albietz, L. M. Lenton, S. G. McLennan, “Wavefront aberrations following LASIK and Lensectomy corrections for hypermetropia,” J. Refract. Surg. (to be published).

D. A. Atchison, G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, UK, 2000), pp. 147–149, 173–176.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Root-mean squared Zernike wave aberrations (µm) between (-)40° temporal (T) and (+)40° nasal visual field angles for five subjects. Anterior corneal (C), internal (I), and overall aberrations (O) are shown. Left, middle, and right columns have results for second-order aberrations, third-order aberrations, and fourth-order aberrations, respectively. For subject DAA, additional results are shown for an image radius of curvature of -22 mm (dashed curves). For subject CA, additional results are shown for an undecentered and untitled cornea (dashed curves). There are neither overall measurements nor estimations of internal aberrations for some subjects at some angles. Note that the scales for the columns are different.

Fig. 2
Fig. 2

Geometry used to calculate the decentration and tilt of the cornea relative to the line of sight.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

SB=λSE.
FP=(FS+SE)λ.
VB=FP VC/(FV+VC).
x=VS=VB-SB
θ=x/FV.

Metrics