Abstract

Existing color constancy methods cannot handle both uniformly colored surfaces and highly textured surfaces in a single integrated framework. Statistics-based methods require many surface colors and become error prone when there are only a few surface colors. In contrast, dichromatic-based methods can successfully handle uniformly colored surfaces but cannot be applied to highly textured surfaces, since they require precise color segmentation. We present a single integrated method to estimate illumination chromaticity from single-colored and multicolored surfaces. Unlike existing dichromatic-based methods, the proposed method requires only rough highlight regions without segmenting the colors inside them. We show that, by analyzing highlights, a direct correlation between illumination chromaticity and image chromaticity can be obtained. This correlation is clearly described in “inverse-intensity chromaticity space,” a novel two-dimensional space that we introduce. In addition, when Hough transform and histogram analysis is utilized in this space, illumination chromaticity can be estimated robustly, even for a highly textured surface.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription