Abstract

The chemical reaction of a sample with atmospheric gases causes a significant error in the determinantion of the complex refractive index n=1-δ+iβ in the extreme-ultraviolet region. The protection of samples removes this effect but hampers the interpretation of measurements. To overcome this difficulty, we derive the exact dependences on film thickness of the reflectivity and transmissivity of a protected film. These dependences greatly simplify the determination of δ and β when the spectra of several films with different thickness and identical protection are measured. They also allow the verification of the δ(ω) obtained from the Kramers–Kronig relation and even make the Kramers–Kronig method unnecessary in many cases. As a practical application, the optical constants of Sc and Ti are determined at ℏω=18–70 eV and 18–99 eV, respectively. The essential feature of our experimental technique is deposition of a film sample directly on a silicon photodiode that allows easy operation with both thin (∼10-nm) and thick (∼100-nm) films. The comparison of calculated reflectivities of Si–Sc multilayers with the measured values shows the high accuracy of the determined δ(ω) and β(ω).

© 2004 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription