Abstract

Based on the concept of common-path/common-mode adaptive optics, the time-sharing wave-front-sensing adaptive optics system contains only one Hartmann–Shack (H–S) wave-front sensor, which detects two aberrations in the beam path alternately. After data fusion of the two aberrations, the actuator voltage of the deformable mirror (DM) is obtained. Four different data fusion methods are developed. How the disturbances of the slope data and the response matrix influence the DM’s actuator voltage in the data fusion methods is discussed, and the effective upper limits are given. Feasible data fusion methods are tested, and experiments verify that the performance of the system is good. The time-sharing technique is limited in sampling rate and is suitable only for corrections of slowly changing phases, because the H–S wave-front sensor’s sampling frequency must be adequate for the alternate detection of two aberrations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription