Abstract

Plasmonic waveguides can guide light along metal–dielectric interfaces with propagating wave vectors of greater magnitude than are available in free space and hence with propagating wavelengths shorter than those in vacuum. This is a necessary, rather than sufficient, condition for subwavelength confinement of the optical mode. By use of the reflection pole method, the two-dimensional modal solutions for single planar waveguides as well as adjacent waveguide systems are solved. We demonstrate that, to achieve subwavelength pitches, a metal–insulator–metal geometry is required with higher confinement factors and smaller spatial extent than conventional insulator–metal–insulator structures. The resulting trade-off between propagation and confinement for surface plasmons is discussed, and optimization by materials selection is described.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
    [CrossRef]
  2. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475–478 (1997).
    [CrossRef] [PubMed]
  3. M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
    [CrossRef]
  5. J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
    [CrossRef]
  6. R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
    [CrossRef]
  7. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
    [CrossRef]
  8. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef] [PubMed]
  9. R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–847 (2000).
    [CrossRef]
  10. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
    [CrossRef]
  11. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
    [CrossRef]
  12. F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
    [CrossRef]
  13. P. Berini, “Plasmon–polariton modes guided by a metal film of finite width,” Opt. Lett. 24, 1011–1013 (1999).
    [CrossRef]
  14. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
    [CrossRef]
  15. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  16. K. R. Welford, J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
    [CrossRef]
  17. P. Tournois, V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
    [CrossRef]
  18. Y. Wang, “Wavelength selection with coupled surface plasmon waves,” Appl. Phys. Lett. 82, 4385–4387 (2003).
    [CrossRef]
  19. H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
    [CrossRef]
  20. E. Anemogiannis, E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
    [CrossRef]
  21. C. Chen, P. Berini, D. Feng, S. Tanev, V. P. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000).
    [CrossRef] [PubMed]
  22. E. Anemogiannis, E. N. Glytsis, T. K. Gaylord, “Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method,” J. Lightwave Technol. 17, 929–940 (1999).
    [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants and Solids (Academic, Orlando, Fla., 1985).
  24. I. V. Novikov, A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
    [CrossRef]

2004

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

2003

Y. Wang, “Wavelength selection with coupled surface plasmon waves,” Appl. Phys. Lett. 82, 4385–4387 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

2002

I. V. Novikov, A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

2001

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

2000

R. Charbonneau, P. Berini, E. Berolo, E. Lisicka-Shrzek, “Experimental observation of plasmon–polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25, 844–847 (2000).
[CrossRef]

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

C. Chen, P. Berini, D. Feng, S. Tanev, V. P. Tzolov, “Efficient and accurate numerical analysis of multilayer planar optical waveguides in lossy anisotropic media,” Opt. Express 7, 260–272 (2000).
[CrossRef] [PubMed]

1999

1998

1997

1992

E. Anemogiannis, E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344–1351 (1992).
[CrossRef]

1991

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

1988

K. R. Welford, J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

1986

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

1981

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

1969

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Anemogiannis, E.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Aussenegg, F. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Berini, P.

Berolo, E.

Bradberry, G. W.

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Brongersma, M. L.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Burke, J. J.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Charbonneau, R.

Chen, C.

Dereux, A.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Dickson, R. M.

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

Ditlbacher, H.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Fan, S.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

Feng, D.

Gaylord, T. K.

Girard, Ch.

J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Glytsis, E. N.

Goudonnet, J. P.

J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Kobayashi, T.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Krenn, J. R.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Lamprecht, B.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Laude, V.

P. Tournois, V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

Leitner, A.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

M. Quinten, A. Leitner, J. R. Krenn, F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
[CrossRef]

Lisicka-Shrzek, E.

Lyon, L. A.

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Maradudin, A. A.

I. V. Novikov, A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Morimoto, A.

Novikov, I. V.

I. V. Novikov, A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants and Solids (Academic, Orlando, Fla., 1985).

Quinten, M.

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Salerno, M.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

K. R. Welford, J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Schider, G.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

Shin, H.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Takahara, J.

Taki, H.

Tamir, T.

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

Tanev, S.

Tournois, P.

P. Tournois, V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

Tzolov, V. P.

Wang, Y.

Y. Wang, “Wavelength selection with coupled surface plasmon waves,” Appl. Phys. Lett. 82, 4385–4387 (2003).
[CrossRef]

Weeber, J. C.

J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

Welford, K. R.

K. R. Welford, J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

Yamagishi, S.

Yang, F.

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

Yanik, M. F.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

Zia, R.

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

Appl. Phys. Lett.

Y. Wang, “Wavelength selection with coupled surface plasmon waves,” Appl. Phys. Lett. 82, 4385–4387 (2003).
[CrossRef]

H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84, 4421–4423 (2004).
[CrossRef]

Europhys. Lett.

J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663–669 (2002).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

K. R. Welford, J. R. Sambles, “Coupled surface plasmons in a symmetric system,” J. Mod. Opt. 35, 1467–1483 (1988).
[CrossRef]

J. Phys. Chem. B

R. M. Dickson, L. A. Lyon, “Unidirectional plasmon propagation in metallic nanowires,” J. Phys. Chem. B 104, 6095–6098 (2000).
[CrossRef]

Nat. Mater.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef] [PubMed]

Nature (London)

W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003).
[CrossRef]

Opt. Commun.

P. Tournois, V. Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41–45 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B

J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B 33, 5186–5201 (1986).
[CrossRef]

F. Yang, J. R. Sambles, G. W. Bradberry, “Long-range surface modes supported by thin films,” Phys. Rev. B 44, 5855–5872 (1991).
[CrossRef]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of asymmetric structures,” Phys. Rev. B 63, 125417 (2001).
[CrossRef]

M. L. Brongersma, J. W. Hartman, H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[CrossRef]

J. C. Weeber, A. Dereux, Ch. Girard, J. R. Krenn, J. P. Goudonnet, “Plasmon polaritons of metallic nanowires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061–9068 (1999).
[CrossRef]

I. V. Novikov, A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66, 035403 (2002).
[CrossRef]

Phys. Rev. Lett.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47, 1927–1930 (1981).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants and Solids (Academic, Orlando, Fla., 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Insulator–metal–insulator (IMI) (left) and metal–insulator–metal (MIM) (right) geometries for plasmonic slab waveguides with center layer thickness d.

Fig. 2
Fig. 2

Description of MIM and IMI plasmonic waveguides (Au–air, λ=1.55 μm) as a function of decreasing center layer thickness by (a) propagation length, (b) spatial extent, and (c) confinement factor. Insets graphically illustrate plotted terms. (Markers denote the exact location of simulated data points.)

Fig. 3
Fig. 3

Trade-off between propagation length and minimum pitch for plasmonic waveguides of various materials at 1.55 μm. Dotted lines highlight the propagation length and achievable pitch of single-interface Au–air waveguides. Insets depict the modal distributions and pitch definitions for (a) MIM and (b) IMI geometries. (Markers denote the exact location of simulated data points.)

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

kx,metal2+ky,metal2+kz2=ω2c2 εmetal,
kx,dielec2+ky,dielec2+kz2=ω2c2 εdielec,
kzωcεdielec.
kx,metal=ikz2-ω2c2 εmetal1/2,
kx,dielec=ikz2-ω2c2 εdielec1/2.
|kx,dielec| 2πndielecλ=ωcεdielec,
 kzωc2εdielec.
R{εmetal}<-εdielec,
 |kx,metal| >ωc2εdielec>2πndielecλ.
Γ=centlay|ExHy*|dx-+|ExHy*|dx.

Metrics