Abstract

Modified boundary conditions and general surface constitutive equations are derived for a very thin interface with some internal structure that separates two different media. The modified boundary conditions are reduced to the standard ones for an idealized steplike sharp interface without additional structure. These modified boundary conditions together with surface constitutive equations and Maxwell equations in the bulk form a complete set of macroscopic equations to describe optical properties of planar interfaces with thicknesses much less then the wavelength of light. In particular, two-dimensional chiral surfaces are considered that are characterized by surface gyrotropic coefficients even if the two different bulk media and the interface are made of nonchiral materials. It is shown that the rotation of the polarization state should occur for the light reflected from such a surface. This result is supported by recent experimental data.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, UK, 1980).
  2. V. M. Agranovich, V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).
  3. E. U. Condon, “Theories of optical rotary power,” Rev. Mod. Phys. 9, 432–459 (1937).
    [CrossRef]
  4. M. Born, Optik (Springer-Verlag, Heidelberg, Germany, 1972).
  5. H. B. G. Casimir, “Note on a macroscopic theory of optical rotation and double refraction in cubic crystals,” Philips Res. Rep. 21, 417–445 (1966).
  6. J. Maclennan, M. Seul, “Novel stripe textures in nonchiral hexatic liquid-crystal films,” Phys. Rev. Lett. 69, 2082–2085 (1994).
    [CrossRef]
  7. J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
    [CrossRef]
  8. K. Pang, N. A. Clark, “Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films,” Phys. Rev. Lett. 73, 2332–2335 (1994).
    [CrossRef] [PubMed]
  9. X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
    [CrossRef] [PubMed]
  10. J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
    [CrossRef]
  11. R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
    [CrossRef]
  12. F. Charra, J. Cousty, “Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal,” Phys. Rev. Lett. 80, 1682–1685 (1998).
    [CrossRef]
  13. M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
    [CrossRef]
  14. A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
    [CrossRef]
  15. A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
    [CrossRef]
  16. We most thoroughly disagree with one of the referees, who qualified surface chirality to be an oxymoron. It should be noted in this context that the assumption that the surface is thin compared with the wavelength of light does not imply that it has no finite thickness. In fact, all the constitutive coefficients we introduce for the surface are proportional to this thickness.
  17. V. P. Drachev, W. D. Bragg, V. A. Podolsky, V. P. Safonov, W. T. Kim, Z. C. Ying, R. L. Armstrong, V. M. Shalaev, “Large local optical activity in fractal aggregates of nanoparticles,” J. Opt. Soc. Am. B 18, 1896–1903 (2001).
    [CrossRef]
  18. L. Hecht, L. D. Barron, “Rayleigh and Raman optical-activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
    [CrossRef]
  19. L. R. Arnaut, L. E. Davis, “Dispersion characteristics of planar chiral structures,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications (Nexus Media, Swanley, UK, 1995), pp. 381–388.
  20. Yu. Tsvirko, M. A. Tolmazina, “On the boundary conditions for electromagnetic waves at the surface of an optically active crystal,” Sov. Phys. Solid State 3, 1011–1015 (1961).
  21. B. V. Bokut, A. N. Serdukov, “On the phenomenological theory of natural optical activity,” Sov. Phys. JETP 34, 962–964 (1972).
  22. E. V. Bokut, F. I. Fedorov, “Reflection and refraction of light in optically isotropic active media,” Opt. Spectrosk. 9, 635–639 (1960).
  23. V. M. Agranovich, V. I. Ginzburg, “Phenomenological electrodynamics of gyrotropic media,” Sov. Phys. JETP 36, 440–443 (1973).
  24. K. Natori, “Boundary-condition at surface for optically active medium,” J. Phys. Soc. Jpn. 41, 596–600 (1976).
    [CrossRef]
  25. O. S. Eritsyan, “Optical problems in the electrodynamics of gyrotropic media,” Sov. Phys. Usp. 25, 919–935 (1982).
    [CrossRef]
  26. T. Takizawa, “Effect of optical activity on the reflectance of paratellurite, TeO2,” J. Phys. Soc. Jpn. 50, 3054–3062 (1981).
    [CrossRef]
  27. U. Schlagheck, “Symmetry properties in theory of optical-activity,” Z. Phys. 258, 223–230 (1973).
    [CrossRef]
  28. M. P. Silverman, “Specular light-scattering from a chiral medium-unambigous test of gyrotropic constitutive relations,” Lett. Nuovo Cimento 43, 378–382 (1985).
    [CrossRef]
  29. M. P. Silverman, “Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation,” J. Opt. Soc. Am. A 3, 830–837 (1986).
    [CrossRef]
  30. A. Lakhtakia, V. V. Varadan, V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
    [CrossRef]
  31. S. Bassiri, C. H. Papas, N. Engheta, “Electromagnetic-wave propagation through a dielectric–chiral interface and through a chiral slab,” J. Opt. Soc. Am. A 5, 1450–1459 (1988).
    [CrossRef]
  32. A. Yu. Luk’yanov, M. A. Novikov, “Reflection of lightfrom the boundary of chiral gyrotropic medium,” JETP Lett. 51, 673–675 (1990).
  33. A. R. Bungay, Yu. P. Svirko, N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
    [CrossRef]
  34. R. M. Hornreich, S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1963).
    [CrossRef]
  35. J. C. Maxwell, A Treatise on Electricity & Magnetism (Dover, New York, 1954).
  36. D. Bedeaux, J. Vlieger, Optical Properties of Surfaces (Imperial College, London, 2002).
  37. A. A. Golubkov, V. A. Makarov, “Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion,” Phys. Usp. 38, 325–332 (1995).
    [CrossRef]
  38. A. Lakhtakia, W. S. Weiglhofer, “Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations,” Phys. Rev. A 213, 107–111 (1996).
  39. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).
  40. S. L. Prosvirnin, N. I. Zheludev, “Nonreciprocal diffraction of light on a planar chiral structure,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.
  41. A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
    [CrossRef] [PubMed]
  42. E. M. Wright, N. I. Zheludev, “Broken time reversal and parity symmetries for electromagnetic excitations in planar chiral nanostructures,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.
  43. J. P. Rabe, S. Buchholz, L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
    [CrossRef]
  44. L. Askadskaya, C. Boeffel, J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
    [CrossRef]
  45. J. R. Wait, “Theory of magnetotelluric fields,” J. Res. Natl. Bur. Stand. Sect. D 66, 509–541 (1962).
  46. R. W. Groom, R. C. Bailey, “Analytic investigations of the effect of near-surface three-dimensional galvanic scatterers on MT tensor decompositions,” Geophysics 56, 496–518 (1991).
    [CrossRef]
  47. P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a chiral layer,” Electromagnetics 10, 201–211 (1990).
    [CrossRef]
  48. A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millim. Waves 13, 161–170 (1991).
    [CrossRef]

2003 (2)

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

2001 (1)

1998 (2)

F. Charra, J. Cousty, “Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal,” Phys. Rev. Lett. 80, 1682–1685 (1998).
[CrossRef]

M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
[CrossRef]

1996 (1)

A. Lakhtakia, W. S. Weiglhofer, “Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations,” Phys. Rev. A 213, 107–111 (1996).

1995 (1)

A. A. Golubkov, V. A. Makarov, “Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion,” Phys. Usp. 38, 325–332 (1995).
[CrossRef]

1994 (5)

L. Hecht, L. D. Barron, “Rayleigh and Raman optical-activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

J. Maclennan, M. Seul, “Novel stripe textures in nonchiral hexatic liquid-crystal films,” Phys. Rev. Lett. 69, 2082–2085 (1994).
[CrossRef]

J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
[CrossRef]

K. Pang, N. A. Clark, “Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films,” Phys. Rev. Lett. 73, 2332–2335 (1994).
[CrossRef] [PubMed]

R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
[CrossRef]

1993 (4)

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

A. R. Bungay, Yu. P. Svirko, N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
[CrossRef]

J. P. Rabe, S. Buchholz, L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
[CrossRef]

L. Askadskaya, C. Boeffel, J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
[CrossRef]

1992 (1)

A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
[CrossRef]

1991 (3)

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millim. Waves 13, 161–170 (1991).
[CrossRef]

R. W. Groom, R. C. Bailey, “Analytic investigations of the effect of near-surface three-dimensional galvanic scatterers on MT tensor decompositions,” Geophysics 56, 496–518 (1991).
[CrossRef]

1990 (2)

P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a chiral layer,” Electromagnetics 10, 201–211 (1990).
[CrossRef]

A. Yu. Luk’yanov, M. A. Novikov, “Reflection of lightfrom the boundary of chiral gyrotropic medium,” JETP Lett. 51, 673–675 (1990).

1988 (1)

1986 (2)

M. P. Silverman, “Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation,” J. Opt. Soc. Am. A 3, 830–837 (1986).
[CrossRef]

A. Lakhtakia, V. V. Varadan, V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
[CrossRef]

1985 (1)

M. P. Silverman, “Specular light-scattering from a chiral medium-unambigous test of gyrotropic constitutive relations,” Lett. Nuovo Cimento 43, 378–382 (1985).
[CrossRef]

1982 (1)

O. S. Eritsyan, “Optical problems in the electrodynamics of gyrotropic media,” Sov. Phys. Usp. 25, 919–935 (1982).
[CrossRef]

1981 (1)

T. Takizawa, “Effect of optical activity on the reflectance of paratellurite, TeO2,” J. Phys. Soc. Jpn. 50, 3054–3062 (1981).
[CrossRef]

1976 (1)

K. Natori, “Boundary-condition at surface for optically active medium,” J. Phys. Soc. Jpn. 41, 596–600 (1976).
[CrossRef]

1973 (2)

V. M. Agranovich, V. I. Ginzburg, “Phenomenological electrodynamics of gyrotropic media,” Sov. Phys. JETP 36, 440–443 (1973).

U. Schlagheck, “Symmetry properties in theory of optical-activity,” Z. Phys. 258, 223–230 (1973).
[CrossRef]

1972 (1)

B. V. Bokut, A. N. Serdukov, “On the phenomenological theory of natural optical activity,” Sov. Phys. JETP 34, 962–964 (1972).

1966 (1)

H. B. G. Casimir, “Note on a macroscopic theory of optical rotation and double refraction in cubic crystals,” Philips Res. Rep. 21, 417–445 (1966).

1963 (1)

R. M. Hornreich, S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1963).
[CrossRef]

1962 (1)

J. R. Wait, “Theory of magnetotelluric fields,” J. Res. Natl. Bur. Stand. Sect. D 66, 509–541 (1962).

1961 (1)

Yu. Tsvirko, M. A. Tolmazina, “On the boundary conditions for electromagnetic waves at the surface of an optically active crystal,” Sov. Phys. Solid State 3, 1011–1015 (1961).

1960 (1)

E. V. Bokut, F. I. Fedorov, “Reflection and refraction of light in optically isotropic active media,” Opt. Spectrosk. 9, 635–639 (1960).

1937 (1)

E. U. Condon, “Theories of optical rotary power,” Rev. Mod. Phys. 9, 432–459 (1937).
[CrossRef]

Agranovich, V. M.

V. M. Agranovich, V. I. Ginzburg, “Phenomenological electrodynamics of gyrotropic media,” Sov. Phys. JETP 36, 440–443 (1973).

V. M. Agranovich, V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).

Armstrong, R. L.

Arnaut, L. R.

L. R. Arnaut, L. E. Davis, “Dispersion characteristics of planar chiral structures,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications (Nexus Media, Swanley, UK, 1995), pp. 381–388.

Askadskaya, L.

J. P. Rabe, S. Buchholz, L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
[CrossRef]

L. Askadskaya, C. Boeffel, J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
[CrossRef]

Auf der Heyde, T.

A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
[CrossRef]

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

Bailey, R. C.

R. W. Groom, R. C. Bailey, “Analytic investigations of the effect of near-surface three-dimensional galvanic scatterers on MT tensor decompositions,” Geophysics 56, 496–518 (1991).
[CrossRef]

Barron, L. D.

L. Hecht, L. D. Barron, “Rayleigh and Raman optical-activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

Bassiri, S.

Bedeaux, D.

D. Bedeaux, J. Vlieger, Optical Properties of Surfaces (Imperial College, London, 2002).

Boeffel, C.

L. Askadskaya, C. Boeffel, J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
[CrossRef]

Bokut, B. V.

B. V. Bokut, A. N. Serdukov, “On the phenomenological theory of natural optical activity,” Sov. Phys. JETP 34, 962–964 (1972).

Bokut, E. V.

E. V. Bokut, F. I. Fedorov, “Reflection and refraction of light in optically isotropic active media,” Opt. Spectrosk. 9, 635–639 (1960).

Born, M.

M. Born, Optik (Springer-Verlag, Heidelberg, Germany, 1972).

Bragg, W. D.

Buchholz, S.

J. P. Rabe, S. Buchholz, L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
[CrossRef]

Buda, A. B.

A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
[CrossRef]

Bungay, A. R.

A. R. Bungay, Yu. P. Svirko, N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
[CrossRef]

Casimir, H. B. G.

H. B. G. Casimir, “Note on a macroscopic theory of optical rotation and double refraction in cubic crystals,” Philips Res. Rep. 21, 417–445 (1966).

Charra, F.

F. Charra, J. Cousty, “Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal,” Phys. Rev. Lett. 80, 1682–1685 (1998).
[CrossRef]

Clark, N. A.

J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
[CrossRef]

K. Pang, N. A. Clark, “Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films,” Phys. Rev. Lett. 73, 2332–2335 (1994).
[CrossRef] [PubMed]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

Condon, E. U.

E. U. Condon, “Theories of optical rotary power,” Rev. Mod. Phys. 9, 432–459 (1937).
[CrossRef]

Cousty, J.

F. Charra, J. Cousty, “Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal,” Phys. Rev. Lett. 80, 1682–1685 (1998).
[CrossRef]

Davis, L. E.

L. R. Arnaut, L. E. Davis, “Dispersion characteristics of planar chiral structures,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications (Nexus Media, Swanley, UK, 1995), pp. 381–388.

Drachev, V. P.

Dunmur, D. A.

M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
[CrossRef]

Engheta, N.

Eritsyan, O. S.

O. S. Eritsyan, “Optical problems in the electrodynamics of gyrotropic media,” Sov. Phys. Usp. 25, 919–935 (1982).
[CrossRef]

Fedorov, F. I.

E. V. Bokut, F. I. Fedorov, “Reflection and refraction of light in optically isotropic active media,” Opt. Spectrosk. 9, 635–639 (1960).

Fehevari, M.

M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
[CrossRef]

Ginzburg, V. I.

V. M. Agranovich, V. I. Ginzburg, “Phenomenological electrodynamics of gyrotropic media,” Sov. Phys. JETP 36, 440–443 (1973).

Ginzburg, V. L.

V. M. Agranovich, V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).

Golubkov, A. A.

A. A. Golubkov, V. A. Makarov, “Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion,” Phys. Usp. 38, 325–332 (1995).
[CrossRef]

Groom, R. W.

R. W. Groom, R. C. Bailey, “Analytic investigations of the effect of near-surface three-dimensional galvanic scatterers on MT tensor decompositions,” Geophysics 56, 496–518 (1991).
[CrossRef]

Hecht, L.

L. Hecht, L. D. Barron, “Rayleigh and Raman optical-activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

Hornreich, R. M.

R. M. Hornreich, S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1963).
[CrossRef]

Kim, W. T.

Knobler, C. M.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

Krasavin, A.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

Lakhtakia, A.

A. Lakhtakia, W. S. Weiglhofer, “Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations,” Phys. Rev. A 213, 107–111 (1996).

A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millim. Waves 13, 161–170 (1991).
[CrossRef]

A. Lakhtakia, V. V. Varadan, V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
[CrossRef]

Landau, L. D.

L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, UK, 1980).

Lifshitz, E. M.

L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, UK, 1980).

Luk’yanov, A. Yu.

A. Yu. Luk’yanov, M. A. Novikov, “Reflection of lightfrom the boundary of chiral gyrotropic medium,” JETP Lett. 51, 673–675 (1990).

Maclennan, J.

J. Maclennan, M. Seul, “Novel stripe textures in nonchiral hexatic liquid-crystal films,” Phys. Rev. Lett. 69, 2082–2085 (1994).
[CrossRef]

J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
[CrossRef]

Makarov, V. A.

A. A. Golubkov, V. A. Makarov, “Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion,” Phys. Usp. 38, 325–332 (1995).
[CrossRef]

Marshall, G.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

Maxwell, J. C.

J. C. Maxwell, A Treatise on Electricity & Magnetism (Dover, New York, 1954).

Mislow, K.

A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
[CrossRef]

Mobius, D.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

Natori, K.

K. Natori, “Boundary-condition at surface for optically active medium,” J. Phys. Soc. Jpn. 41, 596–600 (1976).
[CrossRef]

Novikov, M. A.

A. Yu. Luk’yanov, M. A. Novikov, “Reflection of lightfrom the boundary of chiral gyrotropic medium,” JETP Lett. 51, 673–675 (1990).

Osipov, M. A.

M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
[CrossRef]

Overbeck, G. A.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

Pang, K.

K. Pang, N. A. Clark, “Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films,” Phys. Rev. Lett. 73, 2332–2335 (1994).
[CrossRef] [PubMed]

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

Papas, C. H.

Pickup, B. T.

M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
[CrossRef]

Podolsky, V. A.

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

Prosvirnin, S. I.

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

Prosvirnin, S. L.

S. L. Prosvirnin, N. I. Zheludev, “Nonreciprocal diffraction of light on a planar chiral structure,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.

Qiu, X.

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

Rabe, J. P.

J. P. Rabe, S. Buchholz, L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
[CrossRef]

L. Askadskaya, C. Boeffel, J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
[CrossRef]

Ruiz-Garcia, J.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

Safonov, V. P.

Schlagheck, U.

U. Schlagheck, “Symmetry properties in theory of optical-activity,” Z. Phys. 258, 223–230 (1973).
[CrossRef]

Schwanecke, A. S.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

Schwartz, D. K.

R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
[CrossRef]

Selinger, J. V.

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

Serdukov, A. N.

B. V. Bokut, A. N. Serdukov, “On the phenomenological theory of natural optical activity,” Sov. Phys. JETP 34, 962–964 (1972).

Seul, M.

J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
[CrossRef]

J. Maclennan, M. Seul, “Novel stripe textures in nonchiral hexatic liquid-crystal films,” Phys. Rev. Lett. 69, 2082–2085 (1994).
[CrossRef]

Shalaev, V. M.

Shtrikman, S.

R. M. Hornreich, S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1963).
[CrossRef]

Silverman, M. P.

M. P. Silverman, “Reflection and refraction at the surface of a chiral medium: comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation,” J. Opt. Soc. Am. A 3, 830–837 (1986).
[CrossRef]

M. P. Silverman, “Specular light-scattering from a chiral medium-unambigous test of gyrotropic constitutive relations,” Lett. Nuovo Cimento 43, 378–382 (1985).
[CrossRef]

Sohling, U.

J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
[CrossRef]

Stine, K. J.

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).

Svirko, Yu. P.

A. R. Bungay, Yu. P. Svirko, N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
[CrossRef]

Takizawa, T.

T. Takizawa, “Effect of optical activity on the reflectance of paratellurite, TeO2,” J. Phys. Soc. Jpn. 50, 3054–3062 (1981).
[CrossRef]

Tolmazina, M. A.

Yu. Tsvirko, M. A. Tolmazina, “On the boundary conditions for electromagnetic waves at the surface of an optically active crystal,” Sov. Phys. Solid State 3, 1011–1015 (1961).

Tsao, M.-W.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

Tsvirko, Yu.

Yu. Tsvirko, M. A. Tolmazina, “On the boundary conditions for electromagnetic waves at the surface of an optically active crystal,” Sov. Phys. Solid State 3, 1011–1015 (1961).

Uiu, X.

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

Uslenghi, P. L. E.

P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a chiral layer,” Electromagnetics 10, 201–211 (1990).
[CrossRef]

Varadan, V. K.

A. Lakhtakia, V. V. Varadan, V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
[CrossRef]

Varadan, V. V.

A. Lakhtakia, V. V. Varadan, V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
[CrossRef]

Viswanathan, R.

R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
[CrossRef]

Vlieger, J.

D. Bedeaux, J. Vlieger, Optical Properties of Surfaces (Imperial College, London, 2002).

Wait, J. R.

J. R. Wait, “Theory of magnetotelluric fields,” J. Res. Natl. Bur. Stand. Sect. D 66, 509–541 (1962).

Weiglhofer, W. S.

A. Lakhtakia, W. S. Weiglhofer, “Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations,” Phys. Rev. A 213, 107–111 (1996).

Wright, E. M.

E. M. Wright, N. I. Zheludev, “Broken time reversal and parity symmetries for electromagnetic excitations in planar chiral nanostructures,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.

Ying, Z. C.

Zasadzinski, J. A.

R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
[CrossRef]

Zayats, A. V.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

Zheludev, N. I.

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

S. L. Prosvirnin, N. I. Zheludev, “Nonreciprocal diffraction of light on a planar chiral structure,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.

E. M. Wright, N. I. Zheludev, “Broken time reversal and parity symmetries for electromagnetic excitations in planar chiral nanostructures,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.

Zheludev, N. U.

A. R. Bungay, Yu. P. Svirko, N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

A. B. Buda, T. Auf der Heyde, K. Mislow, “On quantifying chirality,” Angew. Chem. Int. Ed. Engl. 31, 989–1007 (1992).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

L. Askadskaya, C. Boeffel, J. P. Rabe, “Molecular-structure and dynamics within self-assembled hexakisalkoxy-triphenylene monolayers and alkane wetting films,” Ber. Bunsenges. Phys. Chem. 97, 517–521 (1993).
[CrossRef]

Chem. Phys. Lett. (1)

L. Hecht, L. D. Barron, “Rayleigh and Raman optical-activity from chiral surfaces,” Chem. Phys. Lett. 225, 525–530 (1994).
[CrossRef]

Electromagnetics (1)

P. L. E. Uslenghi, “Scattering by an impedance sphere coated with a chiral layer,” Electromagnetics 10, 201–211 (1990).
[CrossRef]

Geophysics (1)

R. W. Groom, R. C. Bailey, “Analytic investigations of the effect of near-surface three-dimensional galvanic scatterers on MT tensor decompositions,” Geophysics 56, 496–518 (1991).
[CrossRef]

IEEE Trans. Electromagn. Compat. (1)

A. Lakhtakia, V. V. Varadan, V. K. Varadan, “A parametric study of microwave reflection characteristics of a planar achiral-chiral interface,” IEEE Trans. Electromagn. Compat. EMC-28, 90–95 (1986).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

A. Lakhtakia, “Green’s functions and Brewster condition for a halfspace bounded by an anisotropic impedance plane,” Int. J. Infrared Millim. Waves 13, 161–170 (1991).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. (1)

J. Ruiz-Garcia, X. Uiu, M.-W. Tsao, G. Marshall, C. M. Knobler, G. A. Overbeck, D. Mobius, “Splay stripe textures in Langmuir monolayers,” J. Phys. Chem. 97, 6955–6957 (1993).
[CrossRef]

J. Phys. Soc. Jpn. (2)

K. Natori, “Boundary-condition at surface for optically active medium,” J. Phys. Soc. Jpn. 41, 596–600 (1976).
[CrossRef]

T. Takizawa, “Effect of optical activity on the reflectance of paratellurite, TeO2,” J. Phys. Soc. Jpn. 50, 3054–3062 (1981).
[CrossRef]

J. Res. Natl. Bur. Stand. Sect. D (1)

J. R. Wait, “Theory of magnetotelluric fields,” J. Res. Natl. Bur. Stand. Sect. D 66, 509–541 (1962).

JETP Lett. (1)

A. Yu. Luk’yanov, M. A. Novikov, “Reflection of lightfrom the boundary of chiral gyrotropic medium,” JETP Lett. 51, 673–675 (1990).

Lett. Nuovo Cimento (1)

M. P. Silverman, “Specular light-scattering from a chiral medium-unambigous test of gyrotropic constitutive relations,” Lett. Nuovo Cimento 43, 378–382 (1985).
[CrossRef]

Mol. Phys. (1)

M. A. Osipov, B. T. Pickup, M. Fehevari, D. A. Dunmur, “Chirality measure and chiral order parameter for a two-dimensional system,” Mol. Phys. 94, 283–287 (1998).
[CrossRef]

Nature (London) (1)

R. Viswanathan, J. A. Zasadzinski, D. K. Schwartz, “Spontaneous chiral-symmetry breaking by achiral molecules in a Langmuir-Blodgett-film,” Nature (London) 368, 440–443 (1994).
[CrossRef]

Opt. Spectrosk. (1)

E. V. Bokut, F. I. Fedorov, “Reflection and refraction of light in optically isotropic active media,” Opt. Spectrosk. 9, 635–639 (1960).

Philips Res. Rep. (1)

H. B. G. Casimir, “Note on a macroscopic theory of optical rotation and double refraction in cubic crystals,” Philips Res. Rep. 21, 417–445 (1966).

Phys. Rev. (1)

R. M. Hornreich, S. Shtrikman, “Theory of gyrotropic birefringence,” Phys. Rev. 171, 1065–1074 (1963).
[CrossRef]

Phys. Rev. A (1)

A. Lakhtakia, W. S. Weiglhofer, “Lorentz covariance, Occam’s razor, and a constraint on linear constitutive relations,” Phys. Rev. A 213, 107–111 (1996).

Phys. Rev. B (1)

A. R. Bungay, Yu. P. Svirko, N. U. Zheludev, “Equivalence of the Casimir and the Landau-Lifshitz approaches to continuous-media electrodynamics and optical-activity on reflection,” Phys. Rev. B 47, 11730–11735 (1993).
[CrossRef]

Phys. Rev. E (1)

J. Maclennan, U. Sohling, N. A. Clark, M. Seul, “Textures in hexatic films of nonchiral liquid crystals: symmetry breaking and modulated phases,” Phys. Rev. E 49, 3207–3224 (1994).
[CrossRef]

Phys. Rev. Lett. (6)

K. Pang, N. A. Clark, “Observation of a chiral-symmetry-breaking twist-bend instability in achiral freely suspended liquid-crystal films,” Phys. Rev. Lett. 73, 2332–2335 (1994).
[CrossRef] [PubMed]

X. Qiu, J. Ruiz-Garcia, K. J. Stine, C. M. Knobler, J. V. Selinger, “Direct observation of domain structure in condensed monolayer phases,” Phys. Rev. Lett. 67, 703–706 (1991).
[CrossRef] [PubMed]

J. Maclennan, M. Seul, “Novel stripe textures in nonchiral hexatic liquid-crystal films,” Phys. Rev. Lett. 69, 2082–2085 (1994).
[CrossRef]

F. Charra, J. Cousty, “Surface-induced chirality in a self-assembled monolayer of discotic liquid crystal,” Phys. Rev. Lett. 80, 1682–1685 (1998).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. I. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90, 107404-(1–4) (2003).
[CrossRef]

A. S. Schwanecke, A. Krasavin, D. M. Bagnall, A. Potts, A. V. Zayats, N. I. Zheludev, “Broken time reversal of light interaction with planar chiral nanostructures,” Phys. Rev. Lett. 91, 247404 (1-4) ( 2003).
[CrossRef] [PubMed]

Phys. Usp. (1)

A. A. Golubkov, V. A. Makarov, “Boundary conditions for electromagnetic field on the surface of media with weak spatial dispersion,” Phys. Usp. 38, 325–332 (1995).
[CrossRef]

Rev. Mod. Phys. (1)

E. U. Condon, “Theories of optical rotary power,” Rev. Mod. Phys. 9, 432–459 (1937).
[CrossRef]

Sov. Phys. JETP (2)

V. M. Agranovich, V. I. Ginzburg, “Phenomenological electrodynamics of gyrotropic media,” Sov. Phys. JETP 36, 440–443 (1973).

B. V. Bokut, A. N. Serdukov, “On the phenomenological theory of natural optical activity,” Sov. Phys. JETP 34, 962–964 (1972).

Sov. Phys. Solid State (1)

Yu. Tsvirko, M. A. Tolmazina, “On the boundary conditions for electromagnetic waves at the surface of an optically active crystal,” Sov. Phys. Solid State 3, 1011–1015 (1961).

Sov. Phys. Usp. (1)

O. S. Eritsyan, “Optical problems in the electrodynamics of gyrotropic media,” Sov. Phys. Usp. 25, 919–935 (1982).
[CrossRef]

Synth. Met. (1)

J. P. Rabe, S. Buchholz, L. Askadskaya, “Scanning tunneling microscopy of several alkylated molecular moieties in monolayers on graphite,” Synth. Met. 54, 339–349 (1993).
[CrossRef]

Z. Phys. (1)

U. Schlagheck, “Symmetry properties in theory of optical-activity,” Z. Phys. 258, 223–230 (1973).
[CrossRef]

Other (10)

J. C. Maxwell, A Treatise on Electricity & Magnetism (Dover, New York, 1954).

D. Bedeaux, J. Vlieger, Optical Properties of Surfaces (Imperial College, London, 2002).

M. Born, Optik (Springer-Verlag, Heidelberg, Germany, 1972).

L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, UK, 1980).

V. M. Agranovich, V. L. Ginzburg, Crystal Optics with Spatial Dispersion and Excitons (Springer-Verlag, Berlin, 1984).

We most thoroughly disagree with one of the referees, who qualified surface chirality to be an oxymoron. It should be noted in this context that the assumption that the surface is thin compared with the wavelength of light does not imply that it has no finite thickness. In fact, all the constitutive coefficients we introduce for the surface are proportional to this thickness.

L. R. Arnaut, L. E. Davis, “Dispersion characteristics of planar chiral structures,” in Proceedings of the International Conference on Electromagnetics in Advanced Applications (Nexus Media, Swanley, UK, 1995), pp. 381–388.

E. M. Wright, N. I. Zheludev, “Broken time reversal and parity symmetries for electromagnetic excitations in planar chiral nanostructures,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, London, 1941).

S. L. Prosvirnin, N. I. Zheludev, “Nonreciprocal diffraction of light on a planar chiral structure,” manuscript available from N. I. Zheludev, n.i.zheludev@soton.ac.uk.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (75)

Equations on this page are rendered with MathJax. Learn more.

curlE=- 1ctB,divE=ρ,
curlB=1ctE+1cJ,divB=0.
tP=J.
curlE=-1ctB,divD=0,
curlB=1ctD,divB=0.
divP=ρ,J=Pt+curlM.
curlE=- 1ctB,divD=0,
curlH=1ctD,divB=0.
E(r, ω)=E(r, t)exp(iωt)dt.
curlE=iωcB,divD=0,
curlH=-iωcD,divB=0.
B(r, ω)=B-(r, ω)Θ(-z)+B+(r, ω)Θ(z),
curlB(r, ω)=[curlB-(r, ω)]Θ(-z)+[curlB+(r, ω)]Θ(z)+zˆ×[B+(r, ω)-B-(r, ω)]δ(z),
D(r, ω)=D(r, ω)-ciω [rotM-(r, ω)]Θ(-z)-ciω [rotM+(r, ω)]Θ(z)-ciωzˆ×[M+(r, ω)-M-(r, ω)]δ(z).
E+(r, 0, ω)-E-(r, 0, ω)=0,
H+(r, 0, ω)-H-(r, 0, ω)=0,
Dz+(r, 0, ω)-Dz-(r, 0, ω)=0,
Bz+(r, 0, ω)-Bz-(r, 0, ω)=0.
E+(r, 0, ω)-E-(r, 0, ω)=0,
Dz+(r, 0, ω)-Dz-(r, 0, ω)=-Ds(r, ω),
B+(r, 0, ω)-B-(r, 0, ω)=iωczˆ × Ds(r, ω),
Bz+(r, 0, ω)-Bz-(r, 0, ω)=0,
Ds(r, ω)-ciωzˆ×[M+(r, ω)-M-(r, ω)].
D=E+iωcgem H,
B=-iωcgme E+μH.
jk(ω)=kj(ω),gjkem(ω)=gkjme(ω),
μjk(ω)=μkj(ω).
D=D-ciωrotM=E+iωcgemμ-1B-ciωrot(1-μ-1)B-iωc μ-1gme E.
D=E+gemμ-1rotE+rot(μ-1gme E)+cω2rot[(1-μ-1)rotE].
Ds=zˆ×[(μ-1gmeE)+-(μ-1gmeE)-]+cω2zˆ×{[(1-μ-1)rotE]+-[(1-μ-1)rotE]-}.
Ds=gμ+-gμ-zˆ×E+cω2zˆ×1-1μrotE+-1-1μrotE-=gμ+-gμ-zˆ × E-ciω(μ+-μ-)zˆ × H.
E(r, ω)=E-(r, ω)Θ(-z)+Es(r, ω)δ(z)+E+(r, ω)Θ(z).
E+(r, 0, ω)-E-(r, 0, ω)=-iωczˆ×Bs(r, ω)+Ezs(r, ω),
Dz+(r, 0, ω)-Dz-(r, 0, ω)=-Ds(r, ω),
H+(r, 0, ω)-H-(r, 0, ω)=iωczˆ×Ds(r, ω)+Hzs(r, ω),
Bz+(r, 0, ω)-Bz-(r, 0, ω)=-Bs(r, ω).
Es(r, ω)=Hs(r, ω)=Dzs(r, ω)=Bzs(r, ω)=0.
Ps(r, ω)=[Ds(r, ω), -Ezs(r, ω)],
Ms(r, ω)=[Bs(r, ω), -Hzs(r, ω)].
D(r, ω)=D-(r, ω)-ciωrotM-(r, ω)Θ(-z)+D+(r, ω)-ciωrotM+(r, ω)Θ(z)+Ds(r, ω)-ciωzˆ×[M+(r, ω)-M-(r, ω)]-ciωrotMs(r, ω)δ(z)-ciωzˆ×Ms(r, ω) dδ(z)dz.
Ne(E, D)=E+zˆzˆ  P,
Nm(H, B)=H+zˆzˆ  M,
P=ξeeNe+ξemNm,
M=ξmeNe+ξmmNm,
ξee=[(-1)-1+zˆzˆ]-1,
ξem=iωc [1+(-1)zˆzˆ]-1gem×[1+zˆzˆ(μ-1)]-1,
ξme=-iωc [1+(μ-1)zˆzˆ]-1gme[1+zˆzˆ(-1)]-1,
ξmm=[(μ-1)-1+zˆzˆ]-1,
ξjkee(ω)=ξkjee(ω),ξjkem(ω)=-ξkjme(ω),ξjkmm(ω)=ξkjmm(ω).
Pex(r, ω)P(r, ω)-P+(r, ω)Θ(z)-P-(r, ω)Θ(-z),
Ps(r, ω)=-Pex(r, ω)dz.
Ms(r, ω)=-Mex(r, ω)dz.
Ps=ξee,sNe,++ξem,sNm,+,
Ms=ξme,sNe,++ξmm,sNm,+.
ξαβ,s(ω)=-[ξαβ(z, ω)-ξαβ,+(z, ω)Θ(z)-ξαβ,-(z, ω)Θ(-z)]dz,
ξjkee,s(ω)=ξkjee,s(ω),ξjkem,s(ω)=-ξkjme,s(ω),ξjkmm,s(ω)=ξkjmm,s(ω),
Einc=(1, 0, 0)expiωc naz-ωt,
Binc=na(0, 1, 0)expiωc naz-ωt.
Erefl=(rx, ry, 0)expi-ωc naz-ωt,
Brefl=-na(-ry, rx, 0)expi-ωc naz-ωt.
Etr=(tx, ty, 0)expiωc nsz-ωt,
Btr=ns(-ty, tx, 0)expiωc nsz-ωt.
E+-E-=-iωczˆ × Ms,
H+-H-=iωczˆ × Ps.
ξee,sγ,ξem,siωcgem,s,ξme,s-iωcgme,s
gxxem,s=gxxme,sgxxs,gyyem,s=gyyme,sgyys,
gxyem,s=gyxme,sgxys,gyxem,s=gxyme,sgyxs.
Ex+-Ex-=ωc2(gxysEx++gyysEy+),
Ey+-Ey-=-ωc2(gxxsEx++gyxsEy+),
Hx+-Hx-=-iωcγyEy++iωc (gyxsHx++gyysHy+),
Hy+-Hy-=iωcγxEx++iωc (gxxsHx++gxysHy+).
rx=na-nsna+ns+2 iωc γxna(na+ns)2-4ωc2gxysnans(na+ns)2,
ry=2ωc2(gxxs-gyys) nans(na+ns)2.
rx=2ωc2(gxxs-gyys) nans(na+ns)2,
ry=na-nsna+ns+2 iωc γyna(na+ns)2+4ωc2gyxsnans(na+ns)2.

Metrics