Abstract

An accurate two-dimensional (2D) model is introduced for the simulation of an arrayed-waveguide grating (AWG) demultiplexer by integrating the field distribution along the vertical direction. The equivalent 2D model has almost the same accuracy as the original three-dimensional model and is more accurate for the AWG considered here than the conventional 2D model based on the effective-index method. To further improve the computational efficiency, the reciprocity theory is applied to the optimal design of a flat-top AWG demultiplexer with a special input structure.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. K. Smit, C. V. Dam, “Phasar based WDM devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
    [CrossRef]
  2. D. Dai, S. Liu, S. He, Q. Zhou, “Optimal design of an MMI coupler for broadening the spectral response of an AWG demultiplexer,” J. Lightwave Technol. 20, 1957–1961 (2002).
    [CrossRef]
  3. M. E. Marhic, X. Yi, “Calculation of dispersion in arrayed-waveguide grating demultiplexers by using a shifting-image method,” IEEE J. Sel. Top. Quantum Electron. 8, 1149–1157 (2002).
    [CrossRef]
  4. R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
    [CrossRef]
  5. A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
    [CrossRef]
  6. Z. Shi, J. He, S. He, “An analytic method for designing passband flattened DWDM demultiplexers using spatial phase modulation,” J. Lightwave Technol. 21, 2314–2321 (2003).
    [CrossRef]
  7. J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
    [CrossRef]
  8. D. Dai, W. Mei, S. He, “Use of a tapered MMI coupler to broaden the passband of an AWG,” Opt. Commun. 219, 233–239 (2003).
    [CrossRef]
  9. K. Okamoto, A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
    [CrossRef]
  10. D. Dai, S. He, “Fast design method for a flat-top arrayed-waveguide-grating demultiplexer using the reciprocity theory,” J. Opt. Netw.2, 402–412 (2003), http://www.osa-jon.org/abstract.cfm?URI=JON-2-12-402 .
  11. D. Dai, S. He, “Analysis of multimode effects in the FPR of a SOI-based AWG demulitplexer,” Appl. Opt. 42, 4860–4866 (2003).
    [CrossRef] [PubMed]
  12. N.-N. Feng, G.-R. Zhou, W. P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” J. Lightwave Technol. 20, 1976–1980 (2002).
    [CrossRef]

2003 (3)

2002 (3)

1997 (1)

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

1996 (4)

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
[CrossRef]

K. Okamoto, A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[CrossRef]

M. K. Smit, C. V. Dam, “Phasar based WDM devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Adesida, I.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Amerfoort, M. R.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Andreadakis, N. C.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Bhat, R.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Bruno, A.

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

Caneau, C.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Dai, D.

Dam, C. V.

M. K. Smit, C. V. Dam, “Phasar based WDM devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Feng, N.-N.

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
[CrossRef]

He, J.

He, S.

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
[CrossRef]

Huang, W. P.

Koza, M. A.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

LeBlanc, H. P.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Liu, S.

Marhic, M. E.

M. E. Marhic, X. Yi, “Calculation of dispersion in arrayed-waveguide grating demultiplexers by using a shifting-image method,” IEEE J. Sel. Top. Quantum Electron. 8, 1149–1157 (2002).
[CrossRef]

Mei, W.

D. Dai, W. Mei, S. He, “Use of a tapered MMI coupler to broaden the passband of an AWG,” Opt. Commun. 219, 233–239 (2003).
[CrossRef]

Okamoto, K.

K. Okamoto, A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[CrossRef]

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
[CrossRef]

Rajhel, A.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Rigny, A.

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
[CrossRef]

Shi, Z.

Sik, H.

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

Smit, M. K.

M. K. Smit, C. V. Dam, “Phasar based WDM devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

Soole, J. B. D.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Sugita, A.

K. Okamoto, A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[CrossRef]

Yi, X.

M. E. Marhic, X. Yi, “Calculation of dispersion in arrayed-waveguide grating demultiplexers by using a shifting-image method,” IEEE J. Sel. Top. Quantum Electron. 8, 1149–1157 (2002).
[CrossRef]

Youtsey, C.

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

Zhou, G.-R.

Zhou, Q.

Appl. Opt. (1)

Electron. Lett. (2)

A. Rigny, A. Bruno, H. Sik, “Multigrating method for flattened spectral response wavelength multi/demultiplexer,” Electron. Lett. 33, 1701–1702 (1997).
[CrossRef]

K. Okamoto, A. Sugita, “Flat spectral response arrayed-waveguide grating multiplexer with parabolic waveguide horns,” Electron. Lett. 32, 1661–1662 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

M. K. Smit, C. V. Dam, “Phasar based WDM devices: principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
[CrossRef]

M. E. Marhic, X. Yi, “Calculation of dispersion in arrayed-waveguide grating demultiplexers by using a shifting-image method,” IEEE J. Sel. Top. Quantum Electron. 8, 1149–1157 (2002).
[CrossRef]

R. Scarmozzino, A. Gopinath, R. Pregla, S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150–162 (1996).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. B. D. Soole, M. R. Amerfoort, H. P. LeBlanc, N. C. Andreadakis, A. Rajhel, C. Caneau, R. Bhat, M. A. Koza, C. Youtsey, I. Adesida, “Use of multimode interference couplers to broaden the passband of wavelength-dispersive integrated WDM filters,” IEEE Photon. Technol. Lett. 8, 1340–1342 (1996).
[CrossRef]

J. Lightwave Technol. (3)

Opt. Commun. (1)

D. Dai, W. Mei, S. He, “Use of a tapered MMI coupler to broaden the passband of an AWG,” Opt. Commun. 219, 233–239 (2003).
[CrossRef]

Other (1)

D. Dai, S. He, “Fast design method for a flat-top arrayed-waveguide-grating demultiplexer using the reciprocity theory,” J. Opt. Netw.2, 402–412 (2003), http://www.osa-jon.org/abstract.cfm?URI=JON-2-12-402 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of an AWG demultiplexer. (a) layout of an AWG demultiplexer, (b) configuration near the first FPR, (c) configuration near the second FPR.

Fig. 2
Fig. 2

Special input structure of a parabolic multimode section (top view).

Fig. 3
Fig. 3

Cross section of a SOI rib waveguide.

Fig. 4
Fig. 4

Field distribution AIM(x1, λ0).

Fig. 5
Fig. 5

Features of the spectral response of an AWG demultiplexer with a parabolic waveguide horn when its length increases (α=1.2 and d=10.0 μm). (a) 1-dB bandwidth, (b) ripple, (c) sharpness of the transitions, (d) cross talk, (e) insertion loss, (f) chromatic dispersion Dc_max.

Fig. 6
Fig. 6

Flattened spectral response and the chromatic dispersion for the central channel (Ch0) and the 8th channel (Ch8) of a designed AWG demultiplexer with Lp=504 μm, α=1.2, and d=10.0 μm.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

Ein(x1, y)=q=0M-1aq(x1)uqFPR(y),
aq(x1)=-+Ein(x1, y)uqFPR(y)dy.
E(x, y, z)=q=0M-1aqfar(x, z)uqFPR(y).
aqfar(x, z)=iλ/nqFPR-+aq(x1) ×exp(-inqFPRkr)rcos θin+cos θdr2dx1,
aqfar(x, z)=iλ/nqFPR-+aq(x1) exp(-inqFPRkr)rdx1.
Ein(x1, y)=a0(x1)u0FPR(y),
E(x, y, z)=a0far(x, z)u0FPR(y).
EIAP(x, y)=E(x, y, z)|z=R2-x2=u0FPR(y)a0far(x, z)|z=R2-x2.
EIAP(x, y)=u0FPR(y) iλ/n0FPR-+a0(x1) ×exp(-in0FPRkr)rdx1|z=R2-x2.
ηl=-+-+EIAP(x, y)EAW*(x-ldg, y)dxdy,
ηl=-+-+u0FPR(y)a0(x1) iλ/n0FPR×-+EAW*(x-ldg, y)×exp(-in0FPRkr)rdxdx1dy.
ηl=-+a0(x1) iλ/n0FPR-+AAW*(x-ldg)×exp(-in0FPRkr)rdxdx1,
AAW*(x-ldg)=-+u0FPR(y)EAW*(x-ldg, y)dy.
EEX(x, y, λ)=l=0N-1ηlEAW(x-ldg, y)exp(-iϕl),
EIM(x1, y, λ)=AEX_far0(x1, z, λ)u0FPR(y)|z=(R2-(x1-R/2)2)1/2,
AEX_far0(x1, z, λ)=iλ/n0FPR-+AEX0(x, λ) ×exp(-in0FPRkr)rdx,
AEX0(x, λ)=-+EEX(x, y, λ)u0FPR(y)dy.
AEX0(x, λ)=l=0N-1ηlAAW(x-ldg)exp(-iϕl).
ηout(λ)=-+-+EIM(x1, y, λ)EOW*(x1, y)dx1dy.
ηout(λ)=-+AEX_far0(x1, z, λ)AOW(x1)dx1,
Aow(x1)=-+u0FPR(y)EOW*(x1, y)dy.
ηout(λ)=-+AEX0(x, λ)AOWfar(x)dx,
AOWfar(x)=iλ/n0FPR-+AOW(x1) exp(-in0FPRkr)rdx1.
ηout(λ)=l=0N-1ηlξlexp(-iϕl),
ξl=-+AAW(x-ldg)AOWfar(x)dx.
ηout(λ)=-+[a0(x1)AIM(x1, λ)]dx1,
AIM(x1, λ)=iλ/n0FPR-+l=0N-1ξlAAW*(x-ldg)×exp(-iϕl)exp(-in0FPRkr)rdx.
ηout(λ)=-+-+Ein(x1, y)EIM(x1, y, λ)dx1dy,
EIM(x1, y, λ)=iλ/n0FPR-+l=0NξlEAW*(x-ldg, y)×exp(-iϕl)exp(-in0FPRkr)rdx.
W(z)=(2αλez+wr2)1/2,

Metrics