Abstract

A new type of long narrow aperture in a pyramidal structure on a thick metallic screen is proposed, and optical wave scattering by this structure is simulated. This aperture structure provides high emission intensity and small spot size simultaneously through excitation of the surface plasmon polaritons on the sidewalls of the pyramidal structure. Scattering of optical waves by this structure in the thick metallic screen is solved numerically with a volume integral equation by generalized conjugate residual iteration and fast Fourier transformation. The basic characteristics of the near-field intensities of the aperture are investigated in detail.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
    [CrossRef] [PubMed]
  2. E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).
  3. D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).
  4. M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).
  5. H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
    [CrossRef]
  6. C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).
  7. A. Roberts, “Small-hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
    [CrossRef]
  8. L. Novotony, D. W. Pohl, B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
    [CrossRef]
  9. R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
    [CrossRef]
  10. E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
    [CrossRef] [PubMed]
  11. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
    [CrossRef]
  12. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
    [CrossRef] [PubMed]
  13. A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
    [CrossRef] [PubMed]
  14. K. Tanaka, M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
    [CrossRef] [PubMed]
  15. E. K. Miller, L. Medgyesi-Mitschnag, E. H. Newsman, eds., Computational Electromagnetics Frequency-Domain Method of Moments (IEEE Press, Piscataway, N.J., 1992).
  16. J. H. Wang, Generalized Moment Method in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).
  17. J. J. H. Wang, J. R. Dubberley, “Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method,” IEEE Trans. Microwave Theory Tech. 37, 1119–1124 (1989).
    [CrossRef]
  18. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef] [PubMed]
  19. D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
    [CrossRef]
  20. O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996).
    [CrossRef]
  21. O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
    [CrossRef]
  22. C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
    [CrossRef]
  23. K. Kobayashi, O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996).
    [CrossRef]
  24. K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001).
    [CrossRef]
  25. K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002).
    [CrossRef]
  26. K. Tanaka, M. Tanaka, “Analysis and numerical computation of diffraction of an optical field by a subwavelength-size aperture in a thick metallic screen by use of a volume integral equation,” Appl. Opt. 43, 1734–1746 (2004).
    [CrossRef] [PubMed]
  27. K. Tanaka, M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233, 231–244 (2004).
    [CrossRef]
  28. K. Tanaka, M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765–3771 (2004).
    [CrossRef]
  29. R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).
  30. A. B. Samokhin, “Integral equations of the electrodynamics for three-dimensional structure and iterative method of solving them,” J. Commun. Technol. Electron. 38, 15–34 (1993).
  31. C. C. Su, “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneous and anisotropy,” IEEE Trans. Antennas Propag. 37, 384–389 (1989).
    [CrossRef]
  32. C. C. Su, “The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT,” IEEE Trans. Microwave Theory Tech. 41, 510–515 (1993).
    [CrossRef]
  33. B. J. Lin, “Electromagnetic near-field diffraction of a medium slit,” J. Opt. Soc. Am. 62, 976–981 (1972).
    [CrossRef]
  34. E. Betzig, A. Harootunian, A. Lewis, M. Isaacson, “Near-field diffraction by a slit: implications for superresolution microscopy,” Appl. Opt. 25, 1890–1900 (1986).
    [CrossRef] [PubMed]

2004 (3)

K. Tanaka, M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233, 231–244 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765–3771 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, “Analysis and numerical computation of diffraction of an optical field by a subwavelength-size aperture in a thick metallic screen by use of a volume integral equation,” Appl. Opt. 43, 1734–1746 (2004).
[CrossRef] [PubMed]

2003 (1)

K. Tanaka, M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

2002 (4)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002).
[CrossRef]

2001 (2)

K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001).
[CrossRef]

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

1997 (3)

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

1996 (3)

K. Kobayashi, O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996).
[CrossRef]

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996).
[CrossRef]

1995 (2)

L. Novotony, D. W. Pohl, B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett. 20, 970–972 (1995).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

1993 (3)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

A. B. Samokhin, “Integral equations of the electrodynamics for three-dimensional structure and iterative method of solving them,” J. Commun. Technol. Electron. 38, 15–34 (1993).

C. C. Su, “The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT,” IEEE Trans. Microwave Theory Tech. 41, 510–515 (1993).
[CrossRef]

1991 (1)

A. Roberts, “Small-hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
[CrossRef]

1989 (2)

J. J. H. Wang, J. R. Dubberley, “Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method,” IEEE Trans. Microwave Theory Tech. 37, 1119–1124 (1989).
[CrossRef]

C. C. Su, “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneous and anisotropy,” IEEE Trans. Antennas Propag. 37, 384–389 (1989).
[CrossRef]

1986 (1)

1972 (1)

1950 (1)

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

1944 (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

1928 (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Barchiesi, D.

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Barrett, R.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Berry, T.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Bethe, H. A.

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Betzig, E.

Bouwkamp, C. J.

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Carcia-Vidal, F. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Chan, T. F.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Chichester, R. J.

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

Courjon, D.

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Demmel, J.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Dereux, A.

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Donato, J.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Dongarra, J.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Dubberley, J. R.

J. J. H. Wang, J. R. Dubberley, “Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method,” IEEE Trans. Microwave Theory Tech. 37, 1119–1124 (1989).
[CrossRef]

Ebbesen, T. W.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Eijkhout, V.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Fischer, U. C.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Fuchs, H.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Georgiev, G.

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

Girard, C.

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996).
[CrossRef]

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Goudonnet, J. P.

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Harootunian, A.

Hecht, B.

Höppener, C.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Hori, H.

M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).

Isaacson, M.

Kobayashi, K.

K. Kobayashi, O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996).
[CrossRef]

Labeke, D. V.

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Lewis, A.

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Lin, B. J.

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Lu, N.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Maas, H.-J.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Maratin, O. J. F.

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Dielectric versus topographic contrast in near-field microscopy,” J. Opt. Soc. Am. A 13, 1801–1808 (1996).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Molenda, D.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Muller-Weigand, M.

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

Naber, A.

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Novotony, L.

Oesterschulze, E.

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

Ohtsu, M.

M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Pohl, D. W.

Pozo, R.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Roberts, A.

A. Roberts, “Small-hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
[CrossRef]

Romine, C.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Rudow, O.

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

Samokhin, A. B.

A. B. Samokhin, “Integral equations of the electrodynamics for three-dimensional structure and iterative method of solving them,” J. Commun. Technol. Electron. 38, 15–34 (1993).

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

Su, C. C.

C. C. Su, “The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT,” IEEE Trans. Microwave Theory Tech. 41, 510–515 (1993).
[CrossRef]

C. C. Su, “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneous and anisotropy,” IEEE Trans. Antennas Propag. 37, 384–389 (1989).
[CrossRef]

Synge, E. H.

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Tanaka, K.

K. Tanaka, M. Tanaka, “Analysis and numerical computation of diffraction of an optical field by a subwavelength-size aperture in a thick metallic screen by use of a volume integral equation,” Appl. Opt. 43, 1734–1746 (2004).
[CrossRef] [PubMed]

K. Tanaka, M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233, 231–244 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765–3771 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002).
[CrossRef]

K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001).
[CrossRef]

Tanaka, M.

K. Tanaka, M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765–3771 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233, 231–244 (2004).
[CrossRef]

K. Tanaka, M. Tanaka, “Analysis and numerical computation of diffraction of an optical field by a subwavelength-size aperture in a thick metallic screen by use of a volume integral equation,” Appl. Opt. 43, 1734–1746 (2004).
[CrossRef] [PubMed]

K. Tanaka, M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002).
[CrossRef]

K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001).
[CrossRef]

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

van der Vorst, H.

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Vollkopf, A.

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

Wang, J. H.

J. H. Wang, Generalized Moment Method in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).

Wang, J. J. H.

J. J. H. Wang, J. R. Dubberley, “Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method,” IEEE Trans. Microwave Theory Tech. 37, 1119–1124 (1989).
[CrossRef]

Watanuki, O.

K. Kobayashi, O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996).
[CrossRef]

Weeber, J. C.

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

Yan, M.

K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002).
[CrossRef]

K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, D. E. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70, 1354–1356 (1997).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

C. C. Su, “Electromagnetic scattering by a dielectric body with arbitrary inhomogeneous and anisotropy,” IEEE Trans. Antennas Propag. 37, 384–389 (1989).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

C. C. Su, “The three-dimensional algorithm of solving the electric field integral equation using face-centered node points, conjugate gradient method, and FFT,” IEEE Trans. Microwave Theory Tech. 41, 510–515 (1993).
[CrossRef]

J. J. H. Wang, J. R. Dubberley, “Computation of fields in an arbitrarily shaped heterogeneous dielectric or biological body by an iterative conjugate gradient method,” IEEE Trans. Microwave Theory Tech. 37, 1119–1124 (1989).
[CrossRef]

J. Appl. Phys. (2)

A. Roberts, “Small-hole coupling of radiation into a near-field probe,” J. Appl. Phys. 70, 4045–4049 (1991).
[CrossRef]

K. Tanaka, M. Tanaka, “Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen,” J. Appl. Phys. 95, 3765–3771 (2004).
[CrossRef]

J. Commun. Technol. Electron. (1)

A. B. Samokhin, “Integral equations of the electrodynamics for three-dimensional structure and iterative method of solving them,” J. Commun. Technol. Electron. 38, 15–34 (1993).

J. Microsc. (2)

K. Tanaka, M. Tanaka, “Simulation of an aperture in the thick metallic screen that gives high intensity and small spot size using surface plasmon polariton,” J. Microsc. 210, 294–300 (2003).
[CrossRef] [PubMed]

E. Oesterschulze, G. Georgiev, M. Muller-Weigand, A. Vollkopf, O. Rudow, “Transmission line probe based on a bow-tie antenna,” J. Microsc. 202, 39–44 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Vac. Sci. Technol. B (1)

K. Kobayashi, O. Watanuki, “Characteristics of photon scanning tunneling microscope read-out,” J. Vac. Sci. Technol. B 14, 804–808 (1996).
[CrossRef]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429–432 (2002).
[CrossRef]

Opt. Commun. (1)

K. Tanaka, M. Tanaka, “Optimized computer-aided design of I-shaped subwavelength aperture for high intensity and small spot size,” Opt. Commun. 233, 231–244 (2004).
[CrossRef]

Opt. Lett. (1)

Opt. Rev. (2)

K. Tanaka, M. Yan, M. Tanaka, “A simulation of near-field optics by three-dimensional volume integral equation of classical electromagnetic theory,” Opt. Rev. 8, 43–53 (2001).
[CrossRef]

K. Tanaka, M. Yan, M. Tanaka, “Simulated output images of near-field optics by volume integral equation: object placed on the dielectric substrate,” Opt. Rev. 9, 213–221 (2002).
[CrossRef]

Philips Res. Rep. (1)

C. J. Bouwkamp, “On the diffraction of electromagnetic waves by small circular disks and holes,” Philips Res. Rep. 5, 401–422 (1950).

Philos. Mag. (1)

E. H. Synge, “A suggested method for extending microscopic resolution into the ultra-microscopic region,” Philos. Mag. 6, 356–362 (1928).

Phys. Rev. (1)

H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163–182 (1944).
[CrossRef]

Phys. Rev. B (1)

C. Girard, J. C. Weeber, A. Dereux, O. J. F. Martin, J. P. Goudonnet, “Optical magnetic near-field intensities around nanometer-scale surface structures,” Phys. Rev. B 55, 16487–16496 (1997).
[CrossRef]

Phys. Rev. E (1)

D. Barchiesi, C. Girard, O. J. F. Maratin, D. V. Labeke, D. Courjon, “Computing the optical near-field distributions around complex subwavelength surface structures: a comparative study of different methods,” Phys. Rev. E 54, 4285–4292 (1996).
[CrossRef]

Phys. Rev. Lett. (2)

A. Naber, D. Molenda, U. C. Fischer, H.-J. Maas, C. Höppener, N. Lu, H. Fuchs, “Enhanced light confinement in a near-field optical probe with a triangular aperture,” Phys. Rev. Lett. 89, 210801 (2002).
[CrossRef] [PubMed]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Science (2)

E. Betzig, R. J. Chichester, “Single molecules observed by near-field scanning optical microscopy,” Science 262, 1422–1425 (1993).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Carcia-Vidal, T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002).
[CrossRef] [PubMed]

Other (5)

D. W. Pohl, D. Courjon, eds., Near Field Optics (Kluwer Academic, Dordrecht, The Netherlands, 1993).

M. Ohtsu, H. Hori, Near-Field Nano-Optics (Kluwer Academic/Plenum, New York, 1999).

E. K. Miller, L. Medgyesi-Mitschnag, E. H. Newsman, eds., Computational Electromagnetics Frequency-Domain Method of Moments (IEEE Press, Piscataway, N.J., 1992).

J. H. Wang, Generalized Moment Method in Electromagnetics: Formulation and Computer Solution of Integral Equations (Wiley, New York, 1991).

R. Barrett, T. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods (Society for Industrial and Applied Mathematics, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Geometry of the problem. A long narrow rectangular aperture is fabricated in a pyramidal structure on a metallic screen.

Fig. 2
Fig. 2

Distributions of near-field intensities on a plane parallel to the xy plane for an aperture without a pyramidal structure. (a) Total near-field intensities |E(k0x, k0y, 2.0)|2, (b) x components |Ex(k0x, k0y, 2.0)|2, (c) y components |Ey(k0x, k0y, 2.0)|2, (d) z components |Ez(k0x, k0y, 2.0)|2. White rectangles represent the cross section of the aperture (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy×k0w=16.8×16.8×1.9, k0ax×k0ay=0.4×2.8, and k0h=0.0).

Fig. 3
Fig. 3

Distributions of field intensities |Ex(k0x)|2 and |Ez(k0x)|2 of the SPP propagating in the z direction between two infinite metal plates as shown in the inset. Ordinate units are arbitrary (ε1=-7.38-j7.18, ε0=1.0, and k0a=0.4).

Fig. 4
Fig. 4

Distributions of near-field intensities on a plane that is parallel to the xy plane with pyramidal structure. (a) Total near-field intensity |E(k0x, k0y, 2.0)|2. (b) The x components of the near-field intensity |Ex(k0x, k0y, 2.0)|2. (c) The y component of the near-field intensity |Ey(k0x, k0y, 2.0)|2. (d) The z component of the near-field intensity |Ez(k0x, k0y, 2.0)|2. White rectangulars represent the cross section of the aperture (ε1=-7.38-j7.18, ε0=1.0, k0bx×k0by×k0w=16.8×16.8×1.0, k0bx×k0by=2.8×2.8, k0ax×k0ay=0.4×2.8, and k0h=0.9).

Fig. 5
Fig. 5

Dependence of the total near-field intensities (a) |E(k0x, 0.0, 2.0)|2 and |E(0.0, k0y, 2.0)|2 on the height of the pyramidal structure h. The total depth at the pyramid peak was maintained at a constant value of k0(w+h)=1.9. The dotted line shows the position of the aperture boundary on the x axis (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy=16.8×16.8, k0bx×k0by=2.8×2.8, k0ax×k0ay=0.4×2.8, and k0ξx×k0ξy=0.1×0.4).

Fig. 6
Fig. 6

Dependence of the total near-field intensities (a) |E(k0x, 0.0, 2.0)|2 and (b) |E(0.0, k0y, 2.0)|2 on the length of the aperture ay for a pyramidal structure height of k0h=0.9 and screen thickness of k0w=1.0. The dotted line shows the position of the aperture boundary on the x axis (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy=16.8×16.8, k0bx×k0by=2.8×2.8, k0ax=0.4, and k0ξx×k0ξy=0.1×0.4).

Fig. 7
Fig. 7

Dependence of the total near-field intensities (a) |E(k0x, 0.0, 2.0)|2 and (b) |E(0.0, k0y, 2.0)|2 on the width of the aperture ax for pyramidal structure height of k0h=0.9 and screen thickness of k0w=1.0. Dotted, dashed, and dotted–dashed lines show the positions of the aperture boundaries on the x axis for k0ax=0.2, 0.4, and 0.6, respectively (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy=16.8×16.8, k0bx×k0by=2.8×2.8, k0ay=2.8, and k0ξx×k0ξy=0.1×0.4).

Fig. 8
Fig. 8

Distributions of the total intensity |E(0.0, k0y, k0z)|2 on the yz plane inside the pyramidal structure. The solid curve at k0z=2.0 is identical to the result for k0h=0.9 shown in Fig. 6(b), and the trapezoid on the y–z plane represents the shape of the pyramidal structure (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy×k0w=16.8×16.8×1.0, k0bx×k0by=2.2×2.8, k0ax×k0ay=0.4×2.8, and k0h=0.9).

Fig. 9
Fig. 9

Distributions of near-field intensities on a plane parallel to the xy plane for an aperture with a pyramidal structure. (a) Total near-field intensities |E(k0x, k0y, 2.0)|2, (b) x components |Ex(k0x, k0y, 2.0)|2, (c) y components |Ey(k0x, k0y, 2.0)|2, (d) z components |Ez(k0x, k0y, 2.0)|2. White rectangles represent the cross section of the aperture (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy×k0w=16.8×16.8×1.0, k0bx×k0by=4.8×4.8, k0ax×k0ay=0.2×4.8, and k0h=0.9).

Fig. 10
Fig. 10

Distribution of total near-field intensities |E(k0x, 0.0, 2.0)|2 (solid circles) and |E(0.0, k0y, 2.0)|2 (open circles) for the aperture with the pyramidal structure shown in Fig. 9. The pyramid structure height is k0h=0.9, and screen thickness is k0w=1.0 (ε1=-7.38-j7.18, ε0=1.0, k0Cx×k0Cy=16.8×16.8, k0bx×k0by=4.8×4.8, k0ax×k0ay=0.2×4.8, and k0ξx×k0ξy=0.1×0.4).

Fig. 11
Fig. 11

Comparison of total near-field intensities (circles) for a long narrow aperture with a pyramidal structure (Figs. 9 and 10; ε1=-7.38-j7.18, ε0=1.0, and k0Cx×k0Cy=16.8×16.8) with those (triangles) for a square aperture without a pyramidal structure (dimensions k0ax×k0ay=0.2×0.2 in a screen of thickness k0w=1.9).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E(x)-k02V[εr(x)-1]Ge̲(x|x)E(x)dv
=Ei(x),
E(x)=EC(x)+Eslab(x),(xV1),
E(x)=EC(x)(xV2).
EC(x)-k02V1+V2[εr(x)-1]Ge̲(x|x)EC(x)dv
=k02V1[εr(x)-εslab]Ge̲(x|x)Eslab(x)dv : (xV1),aboveterm+Et(x) : (xV2),

Metrics