Abstract

An ultracompact and efficient 1×2 splitter for submicrometer silicon-on-insulator rib waveguides using a star coupler is reported. The structure proposed here is decidedly smaller than the usual splitters such as multi-mode interference or Y-branch devices and much less sensitive to technological fluctuations. Design of the compact splitter is optimized at λ=1.31 μm with the effective-index method and a two-dimensional beam-propagation method. The excess losses are lower than 0.15 dB, and the dependence of the losses on wavelength between 1.23 and 1.63 μm is almost flat (variation less than 0.04 dB), which makes the device very interesting for coarse wavelength-division multiplexing applications within the silicon photonic technology.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Lee, D. R. Lim, L. C. Kimerling, “Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction,” Opt. Lett. 26, 1888–1890 (2001).
    [CrossRef]
  2. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
    [CrossRef] [PubMed]
  3. E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
    [CrossRef]
  4. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
    [CrossRef]
  5. P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
    [CrossRef]
  6. Q. Wang, J. Lu, S. He, “Optimal design of a low-loss broadband Y-branch with a multimode waveguide section,” Appl. Opt. 41, 7644–7649 (2002).
    [CrossRef]
  7. Fimmwave; description available at: http://www.photond.com .
  8. H. K. Kogelnik, “Theory of optical waveguides,” in Guided Wave Optoelectronics, 2nd ed., T. Tamir, ed. (Springer-Verlag, Heidelberg, Germany, 1990), Chap. 2, pp. 69–73.
  9. E. Cassan, L. Vivien, S. Laval, “Modeling of optical microcavities in high-contrast index microwaveguides,” presented the 11th International Workshop on Optical Waveguide Theory and Numerical Modeling Conference, Czech Technical University, Prague, April 4–5, 2003.

2003 (2)

E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
[CrossRef]

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1995 (1)

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

1994 (1)

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Bachmann, M.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Besse, P. A.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Bouzaida, N.

Cassan, E.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[CrossRef] [PubMed]

E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
[CrossRef]

E. Cassan, L. Vivien, S. Laval, “Modeling of optical microcavities in high-contrast index microwaveguides,” presented the 11th International Workshop on Optical Waveguide Theory and Numerical Modeling Conference, Czech Technical University, Prague, April 4–5, 2003.

He, S.

Heitzmann, M.

Kimerling, L. C.

Kogelnik, H. K.

H. K. Kogelnik, “Theory of optical waveguides,” in Guided Wave Optoelectronics, 2nd ed., T. Tamir, ed. (Springer-Verlag, Heidelberg, Germany, 1990), Chap. 2, pp. 69–73.

Koster, A.

E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
[CrossRef]

Lardenois, S.

E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
[CrossRef]

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[CrossRef] [PubMed]

Laval, S.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[CrossRef] [PubMed]

E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
[CrossRef]

E. Cassan, L. Vivien, S. Laval, “Modeling of optical microcavities in high-contrast index microwaveguides,” presented the 11th International Workshop on Optical Waveguide Theory and Numerical Modeling Conference, Czech Technical University, Prague, April 4–5, 2003.

Lee, K. K.

Lim, D. R.

Lu, J.

Melchior, H.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Mollard, L.

Orobtchouk, R.

Pascal, D.

Pennings, E. C. M.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

Smit, M. K.

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Vivien, L.

S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Heitzmann, N. Bouzaida, L. Mollard, “Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors,” Opt. Lett. 28, 1150–1152 (2003).
[CrossRef] [PubMed]

E. Cassan, L. Vivien, S. Laval, “Modeling of optical microcavities in high-contrast index microwaveguides,” presented the 11th International Workshop on Optical Waveguide Theory and Numerical Modeling Conference, Czech Technical University, Prague, April 4–5, 2003.

Wang, Q.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

E. Cassan, S. Laval, S. Lardenois, A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” IEEE J. Sel. Top. Quantum Electron. 9, 460–464 (2003).
[CrossRef]

J. Lightwave Technol. (2)

L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13, 615–627 (1995).
[CrossRef]

P. A. Besse, M. Bachmann, H. Melchior, L. B. Soldano, M. K. Smit, “Optical bandwidth and fabrication tolerances of multimode interference couplers,” J. Lightwave Technol. 12, 1004–1009 (1994).
[CrossRef]

Opt. Lett. (2)

Other (3)

Fimmwave; description available at: http://www.photond.com .

H. K. Kogelnik, “Theory of optical waveguides,” in Guided Wave Optoelectronics, 2nd ed., T. Tamir, ed. (Springer-Verlag, Heidelberg, Germany, 1990), Chap. 2, pp. 69–73.

E. Cassan, L. Vivien, S. Laval, “Modeling of optical microcavities in high-contrast index microwaveguides,” presented the 11th International Workshop on Optical Waveguide Theory and Numerical Modeling Conference, Czech Technical University, Prague, April 4–5, 2003.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design of the ultracompact splitter.

Fig. 2
Fig. 2

Diffraction of the injected mode in the slab (Lz=6 μm): solid lines, optical intensity profiles (0.1-μm step); dashed lines, phase almost equal to the reference ϕ0 (2π step).

Fig. 3
Fig. 3

Total losses of the splitter versus the splitter length for d=1.1 μm.

Fig. 4
Fig. 4

Evolution of the magnetic field amplitude in the BPM window (Wx=15 μm and Wz=24 μm) for the optimized splitter (d=1.05 μm and Lz=5 μm).

Fig. 5
Fig. 5

Total losses versus the wavelength: solid curve, splitter with a circular limit for the slab region; dotted curve, splitter with a rectangular limit for the slab region.

Fig. 6
Fig. 6

Evolution versus λ of the size W0 at 1/e2 of the incident guided mode and of the center of the wave front (calculated with Lz=5 μm).

Fig. 7
Fig. 7

Schematic view of the Y-branch splitter.

Fig. 8
Fig. 8

Mean transmission of one output of the Y-branch splitter and evolution of the length of the Y-branch (versus the angle 2Φ between the output waveguides).

Tables (1)

Tables Icon

Table 1 Minimum Excess Losses and Length of the Ultracompact Splitter for d Ranging from 1.05 to 1.25 μm

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R(Lz)=Lz+zc.
d=2R(Lz)sin Φ>w cos Φ,
ϕ0=argH(x=0, z=Lz)exp-j 2πλ N0Lz.
z0=πW02/λg,
R(Lz)=Lz[1+(z0/Lz)2].
zc=z02/Lz.
T=x=0x=wx/2H(x, z=Wz)H11*(x-xs)dx2cos Φx=-Wx/2x=Wx/2|H1(x)|2dxx=-Wx/2x=Wx/2|H11(x)|2dx.
LdB=-10 log T,
H11(x)=H1(x cos Φ)exp(-jk0NTM0x sin Φ).
T(R)=[4N00N0/(N00+N0)2]2=0.999959.
Lz=w[1/sin Φ-1/2 tan Φ].

Metrics