T. E. Gureyev, A. Pogany, D. M. Paganin, S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).

[CrossRef]

D. Dragoman, “Redundancy of phase-space distribution functions in complex field recovery problems,” Appl. Opt. 42, 1932–1937 (2003).

[CrossRef]
[PubMed]

X. Liu, K.-H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225, 19–30 (2003).

[CrossRef]

T. Alieva, M. Bastiaans, L. Stanković, “Signal reconstruction from two close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123 (2003).

[CrossRef]

C. Dorrer, I. Kang, “Complete temporal characterization of short optical pulses by simplified chronocyclic tomography,” Opt. Lett. 28, 1481–1483 (2003).

[CrossRef]
[PubMed]

M. J. Bastiaans, K. B. Wolf, “Phase reconstruction from intensity measurements in linear systems,” J. Opt. Soc. Am. A 20, 1046–1049 (2003).

[CrossRef]

J. Tu, S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946–1949 (1997).

[CrossRef]

T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).

[CrossRef]

D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).

[CrossRef]
[PubMed]

M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).

[CrossRef]
[PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

R. W. Harrison, “Phase problem in crystallography,” J. Opt. Soc. Am. A 10, 1046–1055 (1993).

[CrossRef]

A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer generated holograms,” Opt. Eng. (Bellingham) 19, 297–305 (1980).

[CrossRef]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

T. Alieva, M. Bastiaans, L. Stanković, “Signal reconstruction from two close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123 (2003).

[CrossRef]

T. Alieva, M. Bastiaans, L. Stanković, “Signal reconstruction from two close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123 (2003).

[CrossRef]

M. J. Bastiaans, K. B. Wolf, “Phase reconstruction from intensity measurements in linear systems,” J. Opt. Soc. Am. A 20, 1046–1049 (2003).

[CrossRef]

M. J. Bastiaans, “Application of the Wigner distribution function in optics,” in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, F. Hlawatsch, eds. (Elsevier, Amsterdam, 1997), pp. 375–426.

D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).

[CrossRef]
[PubMed]

M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).

[CrossRef]
[PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

J. C. Dainty, J. R. Fienup, “Phase retrieval and image reconstruction for astronomy,” in Image Recovery: Theory and Applications, H. Stark, ed. (Academic, New York, 1987), pp. 231–275.

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

M. E. Testorf, M. A. Fiddy, “Simulation of light propagation in planar-integrated free-space optics,” Opt. Commun. 176, 365–372 (2000).

[CrossRef]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer generated holograms,” Opt. Eng. (Bellingham) 19, 297–305 (1980).

[CrossRef]

J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).

[CrossRef]
[PubMed]

J. C. Dainty, J. R. Fienup, “Phase retrieval and image reconstruction for astronomy,” in Image Recovery: Theory and Applications, H. Stark, ed. (Academic, New York, 1987), pp. 231–275.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C–The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 105–128.

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

T. E. Gureyev, A. Pogany, D. M. Paganin, S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).

[CrossRef]

T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).

[CrossRef]

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).

X. Liu, K.-H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225, 19–30 (2003).

[CrossRef]

D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).

[CrossRef]
[PubMed]

M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).

[CrossRef]

T. E. Gureyev, A. Pogany, D. M. Paganin, S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).

[CrossRef]

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd. ed. (McGraw-Hill, New York, 1991), Chap. 5.5, pp. 115–117.

T. E. Gureyev, A. Pogany, D. M. Paganin, S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C–The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 105–128.

D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).

[CrossRef]
[PubMed]

M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).

[CrossRef]
[PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).

[CrossRef]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

T. Alieva, M. Bastiaans, L. Stanković, “Signal reconstruction from two close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123 (2003).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

J. Tu, S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946–1949 (1997).

[CrossRef]

M. E. Testorf, M. A. Fiddy, “Simulation of light propagation in planar-integrated free-space optics,” Opt. Commun. 176, 365–372 (2000).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C–The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 105–128.

J. Tu, S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946–1949 (1997).

[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C–The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 105–128.

T. E. Gureyev, A. Pogany, D. M. Paganin, S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).

[CrossRef]

N. Jayshree, G. KeshavaDatta, R. M. Vasu, “Optical tomographic microscope for quantitative imaging of phase objects,” Appl. Opt. 39, 277–283 (2000).

[CrossRef]

D. Dragoman, M. Dragoman, K.-H. Brenner, “Amplitude and phase recovery of rotationally symmetric beams,” Appl. Opt. 41, 5512–5518 (2002).

[CrossRef]
[PubMed]

D. Dragoman, “Redundancy of phase-space distribution functions in complex field recovery problems,” Appl. Opt. 42, 1932–1937 (2003).

[CrossRef]
[PubMed]

T. Alieva, M. Bastiaans, L. Stanković, “Signal reconstruction from two close fractional Fourier power spectra,” IEEE Trans. Signal Process. 51, 112–123 (2003).

[CrossRef]

R. W. Harrison, “Phase problem in crystallography,” J. Opt. Soc. Am. A 10, 1046–1055 (1993).

[CrossRef]

G. Gbur, E. Wolf, “Hybrid diffraction tomography without phase information,” J. Opt. Soc. Am. A 19, 2194–2202 (2002).

[CrossRef]

T. E. Gureyev, A. Roberts, K. A. Nugent, “Partially coherent fields, the transport-of-intensity equation, and phase uniqueness,” J. Opt. Soc. Am. A 12, 1942–1946 (1995).

[CrossRef]

M. J. Bastiaans, K. B. Wolf, “Phase reconstruction from intensity measurements in linear systems,” J. Opt. Soc. Am. A 20, 1046–1049 (2003).

[CrossRef]

A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181–2186 (1993).

[CrossRef]

X. Liu, K.-H. Brenner, “Reconstruction of two-dimensional complex amplitudes from intensity measurements,” Opt. Commun. 225, 19–30 (2003).

[CrossRef]

T. E. Gureyev, A. Pogany, D. M. Paganin, S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Opt. Commun. 231, 53–70 (2004).

[CrossRef]

M. E. Testorf, M. A. Fiddy, “Simulation of light propagation in planar-integrated free-space optics,” Opt. Commun. 176, 365–372 (2000).

[CrossRef]

N. Streibl, “Phase imaging by the transport equation of intensity,” Opt. Commun. 49, 6–10 (1984).

[CrossRef]

J. R. Fienup, “Iterative method applied to image reconstruction and to computer generated holograms,” Opt. Eng. (Bellingham) 19, 297–305 (1980).

[CrossRef]

A. Barty, K. A. Nugent, D. Paganin, A. Roberts, “Quantitative optical phase microscopy,” Opt. Lett. 23, 817–819 (1998).

[CrossRef]

J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett. 3, 27–29 (1978).

[CrossRef]
[PubMed]

Z. Zalevsky, D. Mendlovic, R. G. Dorsch, “Gerchberg–Saxton algorithm in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842–844 (1996).

[CrossRef]
[PubMed]

D. F. McAlister, M. Beck, L. Clarke, A. Mayer, M. G. Raymer, “Optical phase retrieval by phase-space tomography and fractional-order Fourier transforms,” Opt. Lett. 20, 1181–1183 (1995).

[CrossRef]
[PubMed]

C. Dorrer, I. Kang, “Complete temporal characterization of short optical pulses by simplified chronocyclic tomography,” Opt. Lett. 28, 1481–1483 (2003).

[CrossRef]
[PubMed]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237–246 (1972).

J. Tu, S. Tamura, “Wave field determination using tomography of the ambiguity function,” Phys. Rev. E 55, 1946–1949 (1997).

[CrossRef]

M. G. Raymer, M. Beck, D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).

[CrossRef]
[PubMed]

D. T. Smithey, M. Beck, M. G. Raymer, A. Faridani, “Measurement of the Wigner distribution and the density matrix of light mode using optical homodyne tomography: application to squeezed states and the vacuum,” Phys. Rev. Lett. 70, 1244–1247 (1993).

[CrossRef]
[PubMed]

J. C. Dainty, J. R. Fienup, “Phase retrieval and image reconstruction for astronomy,” in Image Recovery: Theory and Applications, H. Stark, ed. (Academic, New York, 1987), pp. 231–275.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C–The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 105–128.

M. J. Bastiaans, “Application of the Wigner distribution function in optics,” in The Wigner Distribution—Theory and Applications in Signal Processing, W. Mecklenbräuker, F. Hlawatsch, eds. (Elsevier, Amsterdam, 1997), pp. 375–426.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, Pa., 2001).

A. Papoulis, Probability, Random Variables and Stochastic Processes, 3rd. ed. (McGraw-Hill, New York, 1991), Chap. 5.5, pp. 115–117.