Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Stern, B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt. Soc. Am. A 21, 360–366 (2004).
    [CrossRef]
  2. A. Stern, B. Javidi, “Generalized sampling theorem and application to digital holography,” in Optical Information Systems II, B. Javidi, D. Psaltis, eds., Proc. SPIE5557 (2004).

2004

Javidi, B.

A. Stern, B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt. Soc. Am. A 21, 360–366 (2004).
[CrossRef]

A. Stern, B. Javidi, “Generalized sampling theorem and application to digital holography,” in Optical Information Systems II, B. Javidi, D. Psaltis, eds., Proc. SPIE5557 (2004).

Stern, A.

A. Stern, B. Javidi, “Sampling in the light of Wigner distribution,” J. Opt. Soc. Am. A 21, 360–366 (2004).
[CrossRef]

A. Stern, B. Javidi, “Generalized sampling theorem and application to digital holography,” in Optical Information Systems II, B. Javidi, D. Psaltis, eds., Proc. SPIE5557 (2004).

J. Opt. Soc. Am. A

Other

A. Stern, B. Javidi, “Generalized sampling theorem and application to digital holography,” in Optical Information Systems II, B. Javidi, D. Psaltis, eds., Proc. SPIE5557 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (1)

Equations on this page are rendered with MathJax. Learn more.

W f s ( x ,   ν ) = - f x + x 2 f * x - x 2 n δ x + x 2 - n Δ l δ x - x 2 - l Δ exp ( - j 2 π x ν ) d x = - - W f ( x ,   ν ) exp ( j 2 π x ν ) d ν n δ ( x - n Δ ) l δ ( x - 2 l Δ ) + n δ x - n + 1 2 Δ l δ x - 2 l + 1 2 Δ exp ( - j 2 π x ν ) d x = 1 2 Δ n δ ( x - n Δ ) k W f x ,   ν - k   1 2 Δ + 1 2 Δ n δ x - n + 1 2 Δ × k exp ( j π k ) W f x ,   ν - k   1 2 Δ .

Metrics