A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).

[CrossRef]

P. Alsholm, “Light scattering by individual and groups of spheroidal particles,” , Lund reports on Atomic Physics (Lund Institute of Technology, Lund, Sweden, 1996).

T. Johansson, M. S. T. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).

[CrossRef]
[PubMed]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).

[CrossRef]

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).

[CrossRef]
[PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).

[CrossRef]

R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).

[CrossRef]

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).

[CrossRef]
[PubMed]

A. M. K. Enejder, “Light scattering and absorption in tissue—models and measurements,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1997).

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).

[CrossRef]
[PubMed]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).

[CrossRef]
[PubMed]

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).

[CrossRef]
[PubMed]

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).

[CrossRef]
[PubMed]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991).

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).

[CrossRef]
[PubMed]

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).

[CrossRef]
[PubMed]

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).

[CrossRef]

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).

[CrossRef]
[PubMed]

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).

[CrossRef]
[PubMed]

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).

[CrossRef]
[PubMed]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).

[CrossRef]
[PubMed]

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).

[CrossRef]
[PubMed]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).

[CrossRef]
[PubMed]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).

[CrossRef]

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).

[CrossRef]
[PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).

[CrossRef]
[PubMed]

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).

[CrossRef]
[PubMed]

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

T. Johansson, M. S. T. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).

[CrossRef]
[PubMed]

S. V. Tsinopoulos, E. J. Sellountos, D. Polyzos, “Light scattering by aggregated red blood cells,” Appl. Opt. 41, 1408–1417 (2002).

[CrossRef]
[PubMed]

R. A. Meyer, “Light scattering from red blood cell ghosts: sensitivity of angular dependent structure to membrane thickness and refractive index,” Appl. Opt. 16, 2036–2037 (1977).

[CrossRef]
[PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).

[CrossRef]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).

[CrossRef]

S. V. Tsinopoulos, D. Polyzos, “Scattering of He–Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).

[CrossRef]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).

[CrossRef]
[PubMed]

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).

[CrossRef]

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).

[CrossRef]
[PubMed]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).

[CrossRef]
[PubMed]

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).

[CrossRef]
[PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).

[CrossRef]
[PubMed]

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).

[CrossRef]
[PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).

[CrossRef]
[PubMed]

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).

[CrossRef]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).

[CrossRef]
[PubMed]

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).

[CrossRef]
[PubMed]

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).

[CrossRef]
[PubMed]

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

P. Alsholm, “Light scattering by individual and groups of spheroidal particles,” , Lund reports on Atomic Physics (Lund Institute of Technology, Lund, Sweden, 1996).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991).

B. T. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, New York, 2000).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).

http://www.semcad.com/ .

A. M. K. Enejder, “Light scattering and absorption in tissue—models and measurements,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1997).

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).