Abstract

The interaction of light with multiple red blood cells was systematically investigated by the finite-difference time-domain method (FDTD). The simulations showed that the lateral multiple scattering between red blood cells is very weak and that the polarization has an almost insignificant influence on the distribution of the scattered light. The numerical results of the FDTD method were compared with the results from the Rytov approximation and the discrete dipole approximation (DDA). The agreement with the DDA was excellent.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Johansson, M. S. T. Thompson, M. Stenberg, C. af Klinteberg, S. Andersson-Engels, S. Svanberg, K. Svanberg, “Feasibility study of a novel system for combined light dosimetry and interstitial photodynamic treatment of massive tumors,” Appl. Opt. 41, 1462–1468 (2002).
    [CrossRef] [PubMed]
  2. S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).
  3. L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
    [CrossRef] [PubMed]
  4. I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
    [CrossRef] [PubMed]
  5. I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).
  6. J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
    [CrossRef] [PubMed]
  7. G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).
    [CrossRef] [PubMed]
  8. Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
    [CrossRef]
  9. J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).
  10. L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  11. S. V. Tsinopoulos, E. J. Sellountos, D. Polyzos, “Light scattering by aggregated red blood cells,” Appl. Opt. 41, 1408–1417 (2002).
    [CrossRef] [PubMed]
  12. E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).
    [CrossRef] [PubMed]
  13. P. Alsholm, “Light scattering by individual and groups of spheroidal particles,” , Lund reports on Atomic Physics (Lund Institute of Technology, Lund, Sweden, 1996).
  14. R. A. Meyer, “Light scattering from red blood cell ghosts: sensitivity of angular dependent structure to membrane thickness and refractive index,” Appl. Opt. 16, 2036–2037 (1977).
    [CrossRef] [PubMed]
  15. J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).
    [CrossRef] [PubMed]
  16. R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
    [CrossRef]
  17. R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
    [CrossRef] [PubMed]
  18. R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).
    [CrossRef] [PubMed]
  19. A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
    [CrossRef] [PubMed]
  20. D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
    [CrossRef] [PubMed]
  21. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  22. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [CrossRef]
  23. B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  24. A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991).
  25. B. T. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, New York, 2000).
  26. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).
  27. A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).
  28. http://www.semcad.com/ .
  29. A. M. K. Enejder, “Light scattering and absorption in tissue—models and measurements,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1997).
  30. A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
    [CrossRef]
  31. L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).
  32. S. V. Tsinopoulos, D. Polyzos, “Scattering of He–Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).
    [CrossRef]

2003 (3)

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

2002 (3)

2000 (2)

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).
[CrossRef] [PubMed]

1999 (5)

R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
[CrossRef]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
[CrossRef] [PubMed]

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

S. V. Tsinopoulos, D. Polyzos, “Scattering of He–Ne laser light by an average-sized red blood cell,” Appl. Opt. 38, 5499–5510 (1999).
[CrossRef]

1998 (2)

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
[CrossRef]

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
[CrossRef] [PubMed]

1997 (1)

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

1995 (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

1994 (2)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

1977 (1)

1974 (1)

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).
[CrossRef] [PubMed]

1972 (1)

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).
[CrossRef] [PubMed]

af Klinteberg, C.

Alsholm, P.

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
[CrossRef]

P. Alsholm, “Light scattering by individual and groups of spheroidal particles,” , Lund reports on Atomic Physics (Lund Institute of Technology, Lund, Sweden, 1996).

Andersson-Engels, S.

Arifler, D.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

Backman, V.

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Bamberg, M.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

Bigio, I. J.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
[CrossRef] [PubMed]

Bown, S. G.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Briggs, G.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Carraro, A.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

Chen, Kun

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Ding, K.-H.

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

Draine, B. T.

B. T. Draine, P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

B. T. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, New York, 2000).

Drezek, R.

Dunn, A.

Enejder, A. M. K.

A. M. K. Enejder, “Light scattering and absorption in tissue—models and measurements,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1997).

Evans, E.

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).
[CrossRef] [PubMed]

Flatau, P. J.

Follen, M.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Freivalds, T.

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).
[CrossRef] [PubMed]

Fung, Y.

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).
[CrossRef] [PubMed]

Goldberg, M. J.

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

Guy, A. W.

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).
[CrossRef] [PubMed]

Hasan, T.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
[CrossRef] [PubMed]

He, J.

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

Iinuma, S.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Ishimaru, A.

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991).

Jacques, S. L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Johansson, T.

Johnson, T. M.

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
[CrossRef] [PubMed]

Jurka, A.

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).
[CrossRef] [PubMed]

Kak, A. C.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).

Karlsson, A.

A. M. K. Nilsson, P. Alsholm, A. Karlsson, S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735–2748 (1998).
[CrossRef]

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

Kim, Y. L.

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Kong, J. A.

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

Kromin, A. K.

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Lakhanic, S.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Lilge, L.

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
[CrossRef] [PubMed]

Lin, J. C.

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).
[CrossRef] [PubMed]

Liu, Yang

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Los, G.

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
[CrossRef] [PubMed]

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Malpica, A.

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Mazarevica, G.

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).
[CrossRef] [PubMed]

Meyer, R. A.

Molpus, K.

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
[CrossRef] [PubMed]

Momma, T.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Mourant, J. R.

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
[CrossRef] [PubMed]

Nilsson, A. M. K.

Pickard, D.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Polyzos, D.

Rajadhyaksha, M.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges,” Opt. Express 6, 147–157 (2000).
[CrossRef] [PubMed]

R. Drezek, A. Dunn, R. Richards-Kortum, “Light scattering from cells: finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651–3661 (1999).
[CrossRef]

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Ripley, P. M.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Rose, I. G.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Roy, H. K.

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Saunders, C.

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

Schomacker, K. T.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Sellountos, E. J.

Slaney, M.

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).

Smithpeter, C.

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Stenberg, M.

Svanberg, K.

Svanberg, S.

Swartling, J.

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

Thompson, M. S. T.

Tsang, L.

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

Tsinopoulos, S. V.

Wagnieres, G.

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Wali, R. K.

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

Wang, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Welch, A.

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

Wilson, B. C.

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
[CrossRef] [PubMed]

Zheng, L.

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (6)

Cancer Res. (1)

S. Iinuma, K. T. Schomacker, G. Wagnieres, M. Rajadhyaksha, M. Bamberg, T. Momma, T. Hasan, “In vivo fluence rate and fractionation effects on tumor response and photobleaching: photodynamic therapy with two photosensitizers in an orthotopic rat tumor model,” Cancer Res. 59, 6164–6170 (1999).

Comput. Methods Programs Biomed. (1)

L. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. L. Kim, Yang Liu, R. K. Wali, H. K. Roy, M. J. Goldberg, A. K. Kromin, Kun Chen, V. Backman, “Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer,” IEEE J. Sel. Top. Quantum Electron. 9, 243–256 (2003).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

J. C. Lin, A. W. Guy, “A note on the optical scattering characteristics of whole blood,” IEEE Trans. Biomed. Eng. 21, 43–45 (1974).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

R. Drezek, M. Guillaud, T. Collier, A. Malpica, C. Macaulay, M. Follen, R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

A. Dunn, C. Smithpeter, A. Welch, R. Richards-Kortum, “Finite-difference time-domain simulation of light scattering from single cells,” J. Biomed. Opt. 2, 262–266 (1997).
[CrossRef] [PubMed]

D. Arifler, M. Guillaud, A. Carraro, A. Malpica, M. Follen, R. Richards-Kortum, “Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition,” J. Biomed. Opt. 8, 484–494 (2003).
[CrossRef] [PubMed]

G. Mazarevica, T. Freivalds, A. Jurka, “Properties of erythrocyte light refraction in diabetic patients,” J. Biomed. Opt. 7, 244–247 (2002).
[CrossRef] [PubMed]

I. J. Bigio, S. G. Bown, G. Briggs, S. Lakhanic, D. Pickard, P. M. Ripley, I. G. Rose, C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: preliminary clinical results,” J. Biomed. Opt. 5, 221–228 (2000).
[CrossRef] [PubMed]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[CrossRef]

J. Gravit. Physiol. (1)

I. J. Bigio, J. R. Mourant, G. Los, “Noninvasive, in-situ measurement of drug concentrations in tissue using optical spectroscopy,” J. Gravit. Physiol. 6, 173–175 (1999).

J. Opt. Soc. Am. A (1)

Microvasc. Res. (1)

E. Evans, Y. Fung, “Improved measurement of the erythrocyte geometry,” Microvasc. Res. 4, 335–347 (1972).
[CrossRef] [PubMed]

Opt. Express (1)

Photochem. Photobiol. (1)

L. Lilge, K. Molpus, T. Hasan, B. C. Wilson, “Light dosimetry for intraperitoneal photodynamic therapy in a murine xenograft model of human epithelial ovarian carcinoma,” Photochem. Photobiol. 68, 281–288 (1998).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. R. Mourant, T. M. Johnson, G. Los, I. J. Bigio, “Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements,” Phys. Med. Biol. 44, 1397–1417 (1999).
[CrossRef] [PubMed]

Other (10)

J. He, A. Karlsson, J. Swartling, S. Andersson-Engels, “Numerical simulations of light scattering by red blood cells,” (Lund Institute of Technology, Department of Electroscience, P.O. Box 118, S-221 00 Lund, Sweden, 2003).

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

P. Alsholm, “Light scattering by individual and groups of spheroidal particles,” , Lund reports on Atomic Physics (Lund Institute of Technology, Lund, Sweden, 1996).

A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, N.J., 1991).

B. T. Draine, Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, New York, 2000).

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

A. C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, Piscataway, N.J., 1988).

http://www.semcad.com/ .

A. M. K. Enejder, “Light scattering and absorption in tissue—models and measurements,” Ph.D. thesis (Lund Institute of Technology, Lund, Sweden, 1997).

L. Tsang, J. A. Kong, K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

RBC cross section, where D(x)=[1-(x/R0)2]1/2[C0+C2(x/R0)2+C4(x/R0)4] and R0=3.91 μm, C0=0.81 μm, C2=7.83 μm, and C4=-4.39 μm, which corresponds to a volume of 94 μm3.

Fig. 2
Fig. 2

3D RBC.

Fig. 3
Fig. 3

Different geometries used in the simulations.

Fig. 4
Fig. 4

Regions used by the FDTD method.

Fig. 5
Fig. 5

Scattering probabilities of the RBC in Fig. 3(a) for polarization along the xˆ and yˆ directions.

Fig. 6
Fig. 6

Absolute value of the far-field amplitude of the electric field for the RBC in Fig. 3(a). Solid curve, far field in the xz plane for the incident field polarized in the x direction; dotted–dashed curve, far field in the yz plane for an incident field polarized in the y direction.

Fig. 7
Fig. 7

Absolute value of the far-field amplitude of the electric field for the RBC in Fig. 3(a). Solid curve, far field in the yz plane for the incident field polarized in the x direction; dotted–dashed curve, the far field in the xz plane for an incident field polarized in the y direction.

Fig. 8
Fig. 8

Scattering probability for the geometry in Fig. 3(b) with four different separation distances. Plots (a), (b), (c), and (d) are the results with separation distances equal to 0a, 1a, 2a, and 3a, respectively, where a is the thickness of the RBC cross section (see Fig. 1).

Fig. 9
Fig. 9

Same case as that in Fig. 8 but for model (c). The superposition method, where the far fields for two single RBCs are added, gives virtually the same results as those from an FDTD calculation of the entire region. The multiple scattering is negligible.

Fig. 10
Fig. 10

Same case as that in Fig. 8 but for model (d). The superposition method, where the far fields for two single RBCs are added, does not give the same result as that from an FDTD calculation of the entire region. The multiple scattering is not negligible.

Fig. 11
Fig. 11

Scattering probability obtained by the FDTD method and the Rytov approximation for the geometry in Fig. 3(d) with distances 0a and 4a between the RBCs.

Fig. 12
Fig. 12

Scattering probability obtained from the FDTD method and the DDA simulations for the geometry in Fig. 3(d) with distance 0a between the RBCs.

Fig. 13
Fig. 13

Same case as that in Fig. 8 but with more than two RBCs (number of cells given in the labeling in each plot).

Tables (1)

Tables Icon

Table 1 Radiated Powers of RBCs with Different Background Refractive Indices

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Einc(z)=ξˆE0exp(ikz),
P(θs)=02πσdiff(θs, ϕ)sin θsdϕ02π0πσdiff(θ, ϕ)sin θ dθdϕ.
σdiff(θ, ϕ)=r2Ss(r, θ, ϕ)  rˆSinc  zˆ,
Ss(r, θ, ϕ)=12Re[E(r, θ, ϕ)×H*(r, θ, ϕ)]
Sinc=12Re[Einc(z)×Hinc*(z)]=12n2η0 |E0|2zˆ
limr E(r, θ, ϕ)=F(θ, ϕ) exp(ikr)kr.
E(rj)=Einc(rj)-kjA(rj, rk)  p(rk).
FRBC(θ, ϕ)=F(θ, ϕ)n=1Nexp(ikrˆ  dn),
E(x, y, z1)=xˆE0exp{ik0[n2z1+(n1-n2)d(x, y)]},
F(θ, ϕ)=i k24π E0exp(ikz1)rˆ×S(yˆ-rˆ×xˆ)×{exp[ik0(n1-n2)d(x, y)]-1}×exp(-ikrˆ  r)dxdy,
Es(r, θ, ϕ)=-k2exp(ikr)4πr k^s×(k^s×e^i)(nr2-1)×RBCdxdydz×exp[i(ki-ks)  r].
EEkk2nr2-1nr2-1 [1+O(δk)],
PP1-nr21-nr22.

Metrics