Abstract

Using a statistical analysis of light propagation in media, we propose a revision to Kubelka–Munk (K–M) theory by taking into account the effect of scattering on the path length of light propagation (path variation). This leads to new relationships between the K–M scattering S and absorbing K coefficients and the intrinsic scattering s and absorbing a coefficients of a material that indicate that the S and K coefficients depend nonlinearly on both a and s. The additivity law that bridges K–M S and K coefficients of a composite medium, such as dye-dispersed paper (dyed paper) and those of its material components (dye and paper), is also revised. It is further shown that experimental findings on dyed paper that the original K–M theory failed to explain can be clearly understood and accommodated by the new K–M theoretical framework (two-flux approach). Numerical simulations with the revised theory on model ink, paper, and dyed paper have been carried out.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (60)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription