Abstract

Generalized vectorial Rayleigh–Sommerfeld diffraction integrals are developed for the cross-spectral-density matrices of spatially partially coherent beams. Using the Gaussian Schell-model (GSM) beam as an example, we derive the expressions for the propagation of cross-spectral-density matrices and intensity of partially coherent vectorial nonparaxial beams, and the corresponding far-field asymptotic forms, beyond the paraxial approximation. The propagation of the vectorial nonparaxial GSM beams are evaluated and analyzed. It is shown that a 3×3 cross-spectral-density matrix or a vector theory is required for the exact description of nonparaxial GSM beams.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (75)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription