C. Zhou, L. Li, “Formulation of Fourier modal method of symmetric crossed gratings in symmetric mountings,” J. Opt. A Pure Appl. Opt. 6, 43–50 (2004).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A Pure Appl. Opt. 5, 345–355 (2003).

[CrossRef]

G. Granet, J. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A Pure Appl. Opt. 4, S145–S149 (2002).

[CrossRef]

P. Lalanne, D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).

[CrossRef]

O. P. Bruno, F. Reitich, “Calculation of electromagnetic scattering via boundary variations and analytic continuation,” Appl. Comput. Electromagn. Soc. J. 11, 17–31 (1996).

P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

J. B. Harris, T. W. Preist, J. R. Sambles, R. N. Thorpe, R. A. Watts, “Optical response of bigratings,” J. Opt. Soc. Am. A 13, 2041–2049 (1996).

[CrossRef]

J. J. Greffet, C. Baylard, P. Versaevel, “Diffraction of electromagnetic waves by crossed gratings: a series solution,” Opt. Lett. 17, 1740–1742 (1992).

[CrossRef]
[PubMed]

S. T. Han, Y. L. Tsao, R. M. Walser, M. F. Becker, “Electromagnetic scattering of two-dimensional surface-relief dielectric gratings,” Appl. Opt. 31, 2343–2352 (1992).

[CrossRef]
[PubMed]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed gratings,” J. Opt. (Paris) 13, 209–218 (1982).

[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed gratings: a theory and its applications,” Appl. Phys. 18, 39–52 (1979).

[CrossRef]

P. Vincent, “A finite-difference method for dielectric and conducting crossed gratings,” Opt. Commun. 26, 293–296 (1978).

[CrossRef]

D. Maystre, M. Nevière, “Electromagnetic theory of crossed gratings,” J. Opt. (Paris) 9, 301–306 (1978).

[CrossRef]

B. Y. Kinber, A. B. Kotlyar, “Use of symmetry in solving diffraction problems,” Radio Eng. Electron. Phys. 16, 581–587 (1971).

R. Bräuer, O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).

[CrossRef]

R. Bräuer, O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).

[CrossRef]

D. C. Dobson, J. A. Cox, “An integral equation method for biperiodic diffraction structures,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, M. R. McKinney, eds., Proc. SPIE1545, 106–113 (1991).

[CrossRef]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed gratings,” J. Opt. (Paris) 13, 209–218 (1982).

[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed gratings: a theory and its applications,” Appl. Phys. 18, 39–52 (1979).

[CrossRef]

D. C. Dobson, J. A. Cox, “An integral equation method for biperiodic diffraction structures,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, M. R. McKinney, eds., Proc. SPIE1545, 106–113 (1991).

[CrossRef]

W. Ludwig, C. Falter, Symmetries in Physics: Group Theory Applied to Physical Problems (Springer, Berlin, 1988).

G. Granet, J. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A Pure Appl. Opt. 4, S145–S149 (2002).

[CrossRef]

G. Granet, “Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings,” J. Opt. Soc. Am. A 15, 1121–1131 (1998).

[CrossRef]

G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

B. Y. Kinber, A. B. Kotlyar, “Use of symmetry in solving diffraction problems,” Radio Eng. Electron. Phys. 16, 581–587 (1971).

B. Y. Kinber, A. B. Kotlyar, “Use of symmetry in solving diffraction problems,” Radio Eng. Electron. Phys. 16, 581–587 (1971).

P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997).

[CrossRef]

P. Lalanne, D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).

[CrossRef]

P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

P. Lalanne, D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).

[CrossRef]

C. Zhou, L. Li, “Formulation of Fourier modal method of symmetric crossed gratings in symmetric mountings,” J. Opt. A Pure Appl. Opt. 6, 43–50 (2004).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A Pure Appl. Opt. 5, 345–355 (2003).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

W. Ludwig, C. Falter, Symmetries in Physics: Group Theory Applied to Physical Problems (Springer, Berlin, 1988).

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed gratings,” J. Opt. (Paris) 13, 209–218 (1982).

[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed gratings: a theory and its applications,” Appl. Phys. 18, 39–52 (1979).

[CrossRef]

D. Maystre, M. Nevière, “Electromagnetic theory of crossed gratings,” J. Opt. (Paris) 9, 301–306 (1978).

[CrossRef]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed gratings,” J. Opt. (Paris) 13, 209–218 (1982).

[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed gratings: a theory and its applications,” Appl. Phys. 18, 39–52 (1979).

[CrossRef]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed gratings,” J. Opt. (Paris) 13, 209–218 (1982).

[CrossRef]

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed gratings: a theory and its applications,” Appl. Phys. 18, 39–52 (1979).

[CrossRef]

D. Maystre, M. Nevière, “Electromagnetic theory of crossed gratings,” J. Opt. (Paris) 9, 301–306 (1978).

[CrossRef]

G. Granet, J. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A Pure Appl. Opt. 4, S145–S149 (2002).

[CrossRef]

J. V. Smith, Geometrical and Structural Crystallography (Wiley, New York, 1982).

P. Vincent, “A finite-difference method for dielectric and conducting crossed gratings,” Opt. Commun. 26, 293–296 (1978).

[CrossRef]

C. Zhou, L. Li, “Formulation of Fourier modal method of symmetric crossed gratings in symmetric mountings,” J. Opt. A Pure Appl. Opt. 6, 43–50 (2004).

[CrossRef]

O. P. Bruno, F. Reitich, “Calculation of electromagnetic scattering via boundary variations and analytic continuation,” Appl. Comput. Electromagn. Soc. J. 11, 17–31 (1996).

G. H. Derrick, R. C. McPhedran, D. Maystre, M. Nevière, “Crossed gratings: a theory and its applications,” Appl. Phys. 18, 39–52 (1979).

[CrossRef]

P. Lalanne, D. Lemercier-Lalanne, “On the effective medium theory of subwavelength periodic structures,” J. Mod. Opt. 43, 2063–2085 (1996).

[CrossRef]

R. C. McPhedran, G. H. Derrick, M. Nevière, D. Maystre, “Metallic crossed gratings,” J. Opt. (Paris) 13, 209–218 (1982).

[CrossRef]

D. Maystre, M. Nevière, “Electromagnetic theory of crossed gratings,” J. Opt. (Paris) 9, 301–306 (1978).

[CrossRef]

C. Zhou, L. Li, “Formulation of Fourier modal method of symmetric crossed gratings in symmetric mountings,” J. Opt. A Pure Appl. Opt. 6, 43–50 (2004).

[CrossRef]

G. Granet, J. Plumey, “Parametric formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. A Pure Appl. Opt. 4, S145–S149 (2002).

[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A Pure Appl. Opt. 5, 345–355 (2003).

[CrossRef]

E. Noponen, J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11, 2494–2502 (1994).

[CrossRef]

V. Bagnoud, S. Mainguy, “Diffraction of electromagnetic waves by dielectric crossed gratings: a three-dimensional Rayleigh–Fourier solution,” J. Opt. Soc. Am. A 16, 1277–1285 (1999).

[CrossRef]

G. Granet, “Analysis of diffraction by surface-relief crossed gratings with use of the Chandezon method: application to multilayer crossed gratings,” J. Opt. Soc. Am. A 15, 1121–1131 (1998).

[CrossRef]

P. Lalanne, “Improved formulation of the coupled-wave method for two-dimensional gratings,” J. Opt. Soc. Am. A 14, 1592–1598 (1997).

[CrossRef]

L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997).

[CrossRef]

O. P. Bruno, F. Reitich, “Numerical solution of diffraction problems: a method of variation of boundaries. III. Doubly periodic gratings,” J. Opt. Soc. Am. A 10, 2551–2562 (1993).

[CrossRef]

P. Lalanne, G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).

[CrossRef]

G. Granet, B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996).

[CrossRef]

L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996).

[CrossRef]

J. B. Harris, T. W. Preist, J. R. Sambles, R. N. Thorpe, R. A. Watts, “Optical response of bigratings,” J. Opt. Soc. Am. A 13, 2041–2049 (1996).

[CrossRef]

R. Bräuer, O. Bryngdahl, “Electromagnetic diffraction analysis of two-dimensional gratings,” Opt. Commun. 100, 1–5 (1993).

[CrossRef]

P. Vincent, “A finite-difference method for dielectric and conducting crossed gratings,” Opt. Commun. 26, 293–296 (1978).

[CrossRef]

B. Y. Kinber, A. B. Kotlyar, “Use of symmetry in solving diffraction problems,” Radio Eng. Electron. Phys. 16, 581–587 (1971).

W. Ludwig, C. Falter, Symmetries in Physics: Group Theory Applied to Physical Problems (Springer, Berlin, 1988).

J. V. Smith, Geometrical and Structural Crystallography (Wiley, New York, 1982).

J. F. Cornwell, ed., “Appendix C: Character tables for the crystallographic point groups,” in Group Theory in Physics: an Introduction (Academic, San Diego, Calif., 1997), pp. 299–318.

T. Hahn, ed., International Tables for Crystallography, Vol. A (Reidel, Dordrecht, The Netherlands, 1983), pp. 92–109.

D. C. Dobson, J. A. Cox, “An integral equation method for biperiodic diffraction structures,” in International Conference on the Application and Theory of Periodic Structures, J. M. Lerner, M. R. McKinney, eds., Proc. SPIE1545, 106–113 (1991).

[CrossRef]