Abstract

Deconvolution is a necessary tool for the exploitation of a number of imaging instruments. We describe a deconvolution method developed in a Bayesian framework in the context of imaging through turbulence with adaptive optics. This method uses a noise model that accounts for both photonic and detector noises. It additionally contains a regularization term that is appropriate for objects that are a mix of sharp edges and smooth areas. Finally, it reckons with an imperfect knowledge of the point-spread function (PSF) by estimating the PSF jointly with the object under soft constraints rather than blindly (i.e., without constraints). These constraints are designed to embody our knowledge of the PSF. The implementation of this method is called Mistral. It is validated by simulations, and its effectiveness is illustrated by deconvolution results on experimental data taken on various adaptive optics systems and telescopes. Some of these deconvolutions have already been used to derive published astrophysical interpretations.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription