Abstract

We show that surface spectral reflectance can be separated from illumination effects in visible through near-infrared (350 nm–1740 nm) hyperspectral data by using only the information in a single radiance spectrum. The separation method exploits the fact that reflectance and illumination spectra typically lie in distinct subspaces. We present a comparison of a linear and a nonlinear algorithm for the separation. These algorithms compute an estimate of the spectral reflectance up to a scaling factor. In addition, we present an iterative method that is used to determine the starting point for the nonlinear algorithm. We also develop a method for selecting the dimension of the reflectance and illumination subspaces that is appropriate for material identification applications. The accuracy of the separation methods is quantified by application to noisy visible through near-infrared spectral data with a database of 107 materials and 3000 illumination spectra. The utility of the separation method for material identification is demonstrated with the same database. The results show that accurate reflectance recovery and material identification is possible by use of visible through near-infrared spectral data over the outdoor environmental conditions represented in this data set.

© 2004 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (28)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription