Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Analysis of characteristics of bent rib waveguides

Not Accessible

Your library or personal account may give you access

Abstract

With a perfectly matched layer boundary treatment, a semivectorial finite-difference method is used to calculate the eigenmodes of a single-mode (SM) or multimode (MM) bent rib waveguide. A detailed analysis is given for the dependence of the bending losses (including the pure bending loss and the transition loss) on geometrical parameters of the bent rib waveguide such as the rib width, the rib height, and the bending radius. The characteristics of the higher-order modes are analyzed. It is shown that the bending loss of the fundamental mode can be reduced effectively by increasing the width and height of the rib. For an integrated device, undesired effects due to the higher-order modes of a MM bent waveguide can be removed by appropriate choice of the geometrical parameters. An appropriately designed MM bent waveguide is used to reduce effectively the bending loss of the fundamental mode, and a low-loss SM propagation in a MM bent waveguide is realized when the bending losses of the higher-order modes are large enough.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Analysis of the birefringence of a silicon-on-insulator rib waveguide

Daoxin Dai and Sailing He
Appl. Opt. 43(5) 1156-1161 (2004)

Numerical analysis of bent waveguides: bending loss, transmission loss, mode coupling, and polarization coupling

B. M. A. Rahman, D. M. H. Leung, S. S. A. Obayya, and K. T. V. Grattan
Appl. Opt. 47(16) 2961-2970 (2008)

Characteristics of bent terahertz antiresonant reflecting pipe waveguides

Chih-Hsien Lai, Teng Chang, and Yi-Siang Yeh
Opt. Express 22(7) 8460-8472 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved