S. Buhling, F. Wyrowski, “Improved transmission design algorithms by
utilizing variable-strength projections,” J. Mod.
Opt. 49, 1871–1892
(2002).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application ofthe
finite-difference time-domain method for the analysis of axially symmetric
DOEs,” J. Opt. Soc. Am. A 16, 1131–1142
(1999).

[CrossRef]

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for
light wave propagation within liquid crystal devices,”
Opt. Commun. 165, 99–105
(1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods:
unification, accuracy, and comparison with a rigorous boundary element method with
application to diffractive cylindrical lenses,” J.
Opt. Soc. Am. A 15, 1822–1837
(1998).

[CrossRef]

L. Gur, D. Mendlovic, “Diffraction limited domain flat-top
generator,” Opt. Commun. 145, 237–248
(1998).

[CrossRef]

D. W. Prather, J. N. Mait, “Vector-based synthesis of finite aperiodic
subwavelength diffractive optical elements,” J.
Opt. Soc. Am. A 15, 1599–1607
(1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the
analysis of diffractive optical elements,” J. Opt.
Soc. Am. A 14, 34–43
(1997).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of
diffractive cylindrical lenses,” J. Opt. Soc. Am.
A 13, 2219–2231
(1996).

[CrossRef]

E. G. Johnson, M. A. G. Abushagur, “Microgenetic-algorithm optimization methods
applied to dielectric gratings,” J. Opt. Soc. Am.
A 12, 1152–1160
(1995).

[CrossRef]

J. N. Mait, “Understanding diffractive optic design in
the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158
(1995).

[CrossRef]

Feature issue,
“Diffractive optics applications,”
Appl. Opt. 34, 2399–2559
(1995).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption
of electromagnetic waves,” J. Comput.
Phys. 114, 185–200
(1994).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for
diffractive phase elements,” J. Opt. Soc. Am.
A 11, 1827–1834
(1994).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices
using the finite element method,” Opt.
Eng. 33, 3518–3526
(1994).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680
(1983).

[CrossRef]
[PubMed]

J. R. Fienup, “Iterative method applied to image
reconstruction and to computer-generated holography,”
Opt. Eng. 19, 297–306
(1980).

[CrossRef]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination
of phase from image and diffraction plane pictures,”
Optik 35, 237–246
(1972).

K. S. Yee, “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic
media,” IEEE Trans. Antennas Propag. AP-14, 302–307
(1966).

E. G. Johnson, M. A. G. Abushagur, “Microgenetic-algorithm optimization methods
applied to dielectric gratings,” J. Opt. Soc. Am.
A 12, 1152–1160
(1995).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods:
unification, accuracy, and comparison with a rigorous boundary element method with
application to diffractive cylindrical lenses,” J.
Opt. Soc. Am. A 15, 1822–1837
(1998).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption
of electromagnetic waves,” J. Comput.
Phys. 114, 185–200
(1994).

[CrossRef]

S. Buhling, F. Wyrowski, “Improved transmission design algorithms by
utilizing variable-strength projections,” J. Mod.
Opt. 49, 1871–1892
(2002).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for
light wave propagation within liquid crystal devices,”
Opt. Commun. 165, 99–105
(1999).

[CrossRef]

J. R. Fienup, “Iterative method applied to image
reconstruction and to computer-generated holography,”
Opt. Eng. 19, 297–306
(1980).

[CrossRef]

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices
using the finite element method,” Opt.
Eng. 33, 3518–3526
(1994).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods:
unification, accuracy, and comparison with a rigorous boundary element method with
application to diffractive cylindrical lenses,” J.
Opt. Soc. Am. A 15, 1822–1837
(1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of
diffractive cylindrical lenses,” J. Opt. Soc. Am.
A 13, 2219–2231
(1996).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680
(1983).

[CrossRef]
[PubMed]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination
of phase from image and diffraction plane pictures,”
Optik 35, 237–246
(1972).

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods:
unification, accuracy, and comparison with a rigorous boundary element method with
application to diffractive cylindrical lenses,” J.
Opt. Soc. Am. A 15, 1822–1837
(1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of
diffractive cylindrical lenses,” J. Opt. Soc. Am.
A 13, 2219–2231
(1996).

[CrossRef]

J. W. Goodman, Introduction to Fourier Optics
(McGraw-Hill, San Francisco,
Calif., 1968).

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for
diffractive phase elements,” J. Opt. Soc. Am.
A 11, 1827–1834
(1994).

[CrossRef]

L. Gur, D. Mendlovic, “Diffraction limited domain flat-top
generator,” Opt. Commun. 145, 237–248
(1998).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of
diffractive cylindrical lenses,” J. Opt. Soc. Am.
A 13, 2219–2231
(1996).

[CrossRef]

E. G. Johnson, M. A. G. Abushagur, “Microgenetic-algorithm optimization methods
applied to dielectric gratings,” J. Opt. Soc. Am.
A 12, 1152–1160
(1995).

[CrossRef]

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680
(1983).

[CrossRef]
[PubMed]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for
light wave propagation within liquid crystal devices,”
Opt. Commun. 165, 99–105
(1999).

[CrossRef]

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices
using the finite element method,” Opt.
Eng. 33, 3518–3526
(1994).

[CrossRef]

D. W. Prather, J. N. Mait, “Vector-based synthesis of finite aperiodic
subwavelength diffractive optical elements,” J.
Opt. Soc. Am. A 15, 1599–1607
(1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the
analysis of diffractive optical elements,” J. Opt.
Soc. Am. A 14, 34–43
(1997).

[CrossRef]

J. N. Mait, “Understanding diffractive optic design in
the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158
(1995).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector
modeling-diffractive optical elements,” in
Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39
(1995).

[CrossRef]

L. Gur, D. Mendlovic, “Diffraction limited domain flat-top
generator,” Opt. Commun. 145, 237–248
(1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the
analysis of diffractive optical elements,” J. Opt.
Soc. Am. A 14, 34–43
(1997).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector
modeling-diffractive optical elements,” in
Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39
(1995).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for
diffractive phase elements,” J. Opt. Soc. Am.
A 11, 1827–1834
(1994).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for
diffractive phase elements,” J. Opt. Soc. Am.
A 11, 1827–1834
(1994).

[CrossRef]

D. W. Prather, D. Pustai, Shouyuan Shi, “Performance of multilevel diffractive lenses
as a function of f-number,” Appl. Opt. 40, 207–210
(2001).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application ofthe
finite-difference time-domain method for the analysis of axially symmetric
DOEs,” J. Opt. Soc. Am. A 16, 1131–1142
(1999).

[CrossRef]

D. W. Prather, J. N. Mait, “Vector-based synthesis of finite aperiodic
subwavelength diffractive optical elements,” J.
Opt. Soc. Am. A 15, 1599–1607
(1998).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the
analysis of diffractive optical elements,” J. Opt.
Soc. Am. A 14, 34–43
(1997).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector
modeling-diffractive optical elements,” in
Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39
(1995).

[CrossRef]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination
of phase from image and diffraction plane pictures,”
Optik 35, 237–246
(1972).

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

G. S. Smith, An Introduction to Classical Electromagnetic
Radiation (Cambridge U. Press,
Cambridge, UK, 1997).

A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method (Artech House,
Boston, Mass., 1995).

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680
(1983).

[CrossRef]
[PubMed]

S. Buhling, F. Wyrowski, “Improved transmission design algorithms by
utilizing variable-strength projections,” J. Mod.
Opt. 49, 1871–1892
(2002).

[CrossRef]

K. S. Yee, “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic
media,” IEEE Trans. Antennas Propag. AP-14, 302–307
(1966).

K. S. Yee, “Numerical solution of initial boundary value
problems involving Maxwell’s equations in isotropic
media,” IEEE Trans. Antennas Propag. AP-14, 302–307
(1966).

N. Sergienko, J. Turunen, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, A. T. Friberg, “Comparison of electromagnetic and scalar
methods for evaluation of diffractive lenses,” J.
Mod. Opt. 46, 65–82
(1999).

[CrossRef]

J. M. Bendickson, E. N. Glytsis, T. K. Gaylord, “Scalar integral diffraction methods:
unification, accuracy, and comparison with a rigorous boundary element method with
application to diffractive cylindrical lenses,” J.
Opt. Soc. Am. A 15, 1822–1837
(1998).

[CrossRef]

D. W. Prather, J. N. Mait, “Vector-based synthesis of finite aperiodic
subwavelength diffractive optical elements,” J.
Opt. Soc. Am. A 15, 1599–1607
(1998).

[CrossRef]

J. P. Berenger, “A perfectly matched layer for the absorption
of electromagnetic waves,” J. Comput.
Phys. 114, 185–200
(1994).

[CrossRef]

S. Buhling, F. Wyrowski, “Improved transmission design algorithms by
utilizing variable-strength projections,” J. Mod.
Opt. 49, 1871–1892
(2002).

[CrossRef]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary integral methods applied to the
analysis of diffractive optical elements,” J. Opt.
Soc. Am. A 14, 34–43
(1997).

[CrossRef]

D. A. Pommet, M. G. Moharam, E. B. Grann, “Limits of scalar diffraction theory for
diffractive phase elements,” J. Opt. Soc. Am.
A 11, 1827–1834
(1994).

[CrossRef]

K. Hirayama, E. N. Glytsis, T. K. Gaylord, “Rigorous electromagnetic analysis of
diffractive cylindrical lenses,” J. Opt. Soc. Am.
A 13, 2219–2231
(1996).

[CrossRef]

E. G. Johnson, M. A. G. Abushagur, “Microgenetic-algorithm optimization methods
applied to dielectric gratings,” J. Opt. Soc. Am.
A 12, 1152–1160
(1995).

[CrossRef]

D. W. Prather, S. Shi, “Formulation and application ofthe
finite-difference time-domain method for the analysis of axially symmetric
DOEs,” J. Opt. Soc. Am. A 16, 1131–1142
(1999).

[CrossRef]

J. N. Mait, “Understanding diffractive optic design in
the scalar domain,” J. Opt. Soc. Am. A 12, 2145–2158
(1995).

[CrossRef]

M. E. Testorf, M. A. Fiddy, “Efficient optimization of diffractive
optical elements based on rigorous diffraction models,”
J. Opt. Soc. Am. A 18, 2908–2914
(2001).

[CrossRef]

B. Lichtenberg, N. C. Gallagher, “Numerical modeling of diffractive devices
using the finite element method,” Opt.
Eng. 33, 3518–3526
(1994).

[CrossRef]

E. E. Kriezis, S. J. Elston, “Finite-difference time domain method for
light wave propagation within liquid crystal devices,”
Opt. Commun. 165, 99–105
(1999).

[CrossRef]

L. Gur, D. Mendlovic, “Diffraction limited domain flat-top
generator,” Opt. Commun. 145, 237–248
(1998).

[CrossRef]

J. R. Fienup, “Iterative method applied to image
reconstruction and to computer-generated holography,”
Opt. Eng. 19, 297–306
(1980).

[CrossRef]

R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination
of phase from image and diffraction plane pictures,”
Optik 35, 237–246
(1972).

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated
annealing,” Science 220, 671–680
(1983).

[CrossRef]
[PubMed]

D. W. Prather, M. S. Mirotznik, J. N. Mait, “Boundary element method for vector
modeling-diffractive optical elements,” in
Diffractive and Holographic Optics Technology II, I. Cindrich, S. H. Lee, eds., Proc. SPIE2404, 28–39
(1995).

[CrossRef]

A. Taflove, Computational Electrodynamics: The Finite-Difference
Time-Domain Method (Artech House,
Boston, Mass., 1995).

G. S. Smith, An Introduction to Classical Electromagnetic
Radiation (Cambridge U. Press,
Cambridge, UK, 1997).

J. W. Goodman, Introduction to Fourier Optics
(McGraw-Hill, San Francisco,
Calif., 1968).