Abstract

The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects—hypertensive and normotensive—were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
    [CrossRef] [PubMed]
  2. L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
    [CrossRef] [PubMed]
  3. R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).
  4. L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
    [CrossRef] [PubMed]
  5. I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
    [CrossRef] [PubMed]
  6. T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
    [CrossRef] [PubMed]
  7. S. S. Hayreh, “Duke–Elder lecture. Systemic arterial blood pressure and the eye,” Eye 10, 5–28 (1996).
    [CrossRef]
  8. I. A. Bhutto, T. Amemiya, “Choroidal vasculature changes in spontaneously hypertensive rats—transmission electron microscopy and scanning electron microscopy with casts,” Ophthalmic Res. 34, 54–62 (2002).
    [CrossRef] [PubMed]
  9. A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
    [CrossRef] [PubMed]
  10. C. Delaey, J. Van De Voorde, “Regulatory mechanisms in the retinal and choroidal circulation,” Ophthalmic Res. 32, 249–256 (2000).
    [CrossRef] [PubMed]
  11. G. A. Cioffi, E. Granstam, A. Alm, “Ocular circulation,” in Adler’s Physiology of the Eye, 10th ed., P. L. Kaufman, A. Alm, eds. (Mosby, St. Louis, Mo., 2003), pp. 747–784.
  12. K. Polak, L. Schmetterer, C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Visual Sci. 43, 2721–2726 (2002).
  13. G. Michelson, A. Patzelt, J. Harazny, “Flickering light increases retinal blood flow,” Retina 22, 336–343 (2002).
    [CrossRef] [PubMed]
  14. J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).
  15. M. Kondo, L. Wang, A. Bill, “The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats,” Acta Ophthalmol. Scand. 75, 232–235 (1997).
    [CrossRef] [PubMed]
  16. J. J. Steinle, D. Krizsan-Agbas, P. G. Smith, “Regional regulation of choroidal blood flow by autonomic innervation in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R202–R209 (2000).
    [PubMed]
  17. C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).
  18. A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
    [CrossRef]
  19. G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
    [CrossRef]
  20. G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
    [CrossRef] [PubMed]
  21. N. D. Wangsa-Wirawan, R. A. Linsenmeier, “Retinal oxygen: fundamental and clinical aspects,” Arch. Ophthalmol. 121, 547–557 (2003).
    [CrossRef] [PubMed]
  22. R. M. Berne, M. L. Levy, Cardiovascular Physiology, 8th ed. (Mosby, St. Louis, Mo., 2001).
  23. A. C. Guyton, J. E. Hall, Textbook of Medical Physiology, 10th ed. (Saunders, Philadelphia, Pa., 2000).
  24. A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
    [CrossRef] [PubMed]
  25. A. Eisner, J. R. Samples, “Flicker sensitivity and cardiovascular function in healthy middle-aged people,” Arch. Ophthalmol. 118, 1049–1055 (2000).
    [CrossRef] [PubMed]
  26. A. Eisner, “Flashed stimuli and the suppression of flicker response from long-wavelength-sensitive cones: integrating two separate approaches,” J. Opt. Soc. Am. A 18, 2957–2968 (2001).
    [CrossRef]
  27. A. Eisner, D. I. A. Macleod, “Flicker photometric study of chromatic adaption: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–717 (1981).
    [CrossRef] [PubMed]
  28. G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
    [CrossRef] [PubMed]
  29. R. Pflug, R. Nelson, P. K. Ahnelt, “Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties,” J. Neurophysiol. 64, 313–325 (1990).
    [PubMed]
  30. I. D. Cadenas, E. S. Reifsnider, D. Tranchina, “Modulation of synaptic transfer between retinal cones and horizontal cells by spatial contrast,” J. Gen. Physiol. 104, 567–591 (1994).
    [CrossRef] [PubMed]
  31. A. Eisner, A. G. Shapiro, J. A. Middleton, “Equivalence between temporal frequency and modulation depth for flicker response suppression: analysis of a three-process model of visual adaptation,” J. Opt. Soc. Am. A 15, 1987–2002 (1998).
    [CrossRef]
  32. J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
    [CrossRef]
  33. P. A. Sample, “Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function,” Prog. Ret. Eye Res. 19, 369–383 (2000).
    [CrossRef]
  34. J. M. Wild, “Short wavelength automated perimetry,” Acta Ophthalmol. Scand. 79, 546–559 (2001).
    [CrossRef]
  35. A. Eisner, D. F. Austin, J. R. Samples, “Short wavelength automated perimetry and tamoxifen use,” Br. J. Ophthamol. (to be published).
  36. A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).
  37. M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
    [CrossRef] [PubMed]
  38. For each of the three types of hypertensive retinopathy characteristics—vascular sclerosis, focal arteriolar constriction, and arteriovenous narrowing—grades were assigned on a five-point scale. For each characteristic, a score of 0 signified that the vasculature was indistinguishable from that of a young healthy person, a score of 1 signified a minimal difference, a score of 2 signified a more marked difference, and a score of 3 signified more difference yet, by itself enough to indicate a high probability of past or present vascular disease. No person tested had a score of 4, and two people were excluded from the study on the basis of sclerosis scores of 3. The distributions of scores for each subject group are given next. The numbers in parentheses refer to the number of subjects assigned a score of 0, 1, or 2, respectively. Focal arteriolar constriction: normotensive subjects (22, 5, 2), hypertensive subjects (22, 4, 1), and tamoxifen subjects (25, 5, 0). Arteriovenous narrowing: normotensive subjects (20, 7, 2), hypertensive subjects (21, 4, 2), and tamoxifen subjects (24, 6, 0). Vascular sclerosis: normotensive subjects (12, 12, 4), hypertensive subjects (15, 9, 3), and tamoxifen subjects (15, 15, 0).
  39. A. Eisner, “Multiple components in photopic dark adaptation,” J. Opt. Soc. Am. A 3, 655–666 (1986).
    [CrossRef] [PubMed]
  40. A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
    [CrossRef]
  41. The specific order of testing depended on many considerations, some of which are specified in the text. The 1.6-log-td, 580-nm background preceded the 3.6-log-td, 580-nm background so that the dynamics of recovery of SWS-cone-mediated sensitivity could be assessed after a sudden large increase of background illuminance.40(The dynamics of recovery were affected by tamoxifen.35) The use of a 2.0-log-td, 580-nm background was based on preliminary results that suggested that the crossover points of an MWS–LWS-cone mechanism and an SWS-cone mechanism might differ between the hypertensive and the normotensive subject groups. (This suggestion was not verified on prospective testing.) The 2.0-log-td background preceded all other backgrounds by default, given all the other constraints. The 2.6-log-td, 580-nm background was used in order to assess the effects of background illuminance on flicker sensitivity under conditions in which departures from Weber’s law would not be great. There were several practical reasons for merging the protocols for two investigations (one concerning cardiovascular function and the other concerning effects of tamoxifen). Many of the same subjects served as controls for each investigation, and a second nonhypertensive subject group (the tamoxifen subjects) was used prospectively to confirm and to interpret effects from the normotensive subject group.
  42. P. M. Pearson, W. H. Swanson, “Chromatic contrast sensitivity: the role of absolute threshold and gain constant in differences between the fovea and the periphery,” J. Opt. Soc. Am. A 17, 232–243 (2000).
    [CrossRef]
  43. Measurements taken before 2 min were used to show that 440-nm sensitivities had stabilized by 2 min and to verify that SWS cones mediated detection at 440 nm.
  44. A 560-nm, rather than a 540-nm, test was used to eliminate any possibility, however remote, of detection of the test stimulus via SWS cones.
  45. SWAP 30-2 fields were administered for three normotensive subjects, six high-blood-pressure subjects, and two tamoxifen subjects.
  46. L. Wilkinson, G. Blank, C. Gruber, Desktop Data Analysis with SYSTAT (Prentice-Hall, Upper Saddle River, N.J., 1996).
  47. All the variables listed in Table 1were used in conducting a factor analysis for the normotensive subjects’ data. The number of factors was chosen a priorito be four, and a Varimax rotation was used. The first three factors were readily identified as (1) an SWS-cone-sensitivity factor, (2) a flicker-sensitivity factor, and (3) a factor that reflected sensitivities mainly for test wavelengths ranging from approximately 500 to 560 nm on the 2.0-log-td, 580-nm background. The fourth factor was less well defined but reflected sensitivities mainly on the 3.6-log-td, 580-nm background. Because the normotensive group’s maximal sensitivity in the 500- to 580-nm range occurred at 540 nm for the 2.0-log-td, 580-nm background, factor 3 can be identified with an MWS–LWS cone mechanism. Sensitivity to a 580-nm test on the 2.0-log-td 580-nm background was represented approximately equally in factors 2 and 3, and it was the only non-flicker-sensitivity variable with appreciable representation in factor 2.
  48. The threshold elevation from a 2.0- to a 3.6-log-td background did not appear to differ between groups for an SWS-cone mechanism (p=0.380for 440-nm tests), but it may have differed for an MWS–LWS cone mechanism (p= 0.050for 560-nm tests).
  49. The rank order correlations between MAP/HR and logfl. sens.580-logfl. sens.640were computed for the 2.6- and for the 3.6-log-td 580-nm backgrounds. For the normotensive subjects, these rank-order correlations were, respectively, Spearman r=-0.19and Spearman r=0.14.For the high-blood-pressure subjects, the rank-order correlations were, respectively, Spearman r=-0.03and Spearman r=-0.11.
  50. Among normotensive subjects, MAP2-MAP1=-3.3± 1.0 mm Hg (p=0.003),and HR2-HR1=-3.4± 0.6 bpm (p<0.001).Among hypertensive subjects, MAP2-MAP1=-2.4±0.9 mm Hg (p=0.015),and HR2-HR1=-2.5±1.1 bpm (p=0.033).Among tamoxifen subjects, MAP2-MAP1=0.0±0.7 mm Hg (p= 0.99),and HR2-HR1=-2.3±0.8 bpm (p=0.007).
  51. A. Stockman, L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
    [CrossRef] [PubMed]
  52. Adding age to the regression equation for ΔFSλ would not have improved the fit of the regression line to the data; the overall correlation would have changed from R=0.57to R=0.58.Nor was age itself correlated with ΔFSλ (Spearman r=-0.09).Age may have been weakly correlated with MAP2/HR2(Spearman r=0.30,p=0.18).
  53. For the normotensive subjects, the regression equation was ΔFSλ=1.20-0.40(MAP2/HR2)+0.29 ΔT.For the tamoxifen subjects, the regression equation was ΔFSλ= 0.96-0.24(MAP2/HR2)+0.29 ΔT.
  54. The rank order correlation between MAP2/HR2and ΔT was Spearman r=-0.02for the normotensive subjects and Spearman r=-0.12for the tamoxifen subjects.
  55. The correlation between an increase of heart rate and a reduction of mean deviation would have remained significant if the data from subjects who were administered 30-2 visual fields were excluded from the calculation.
  56. Among normotensive subjects, MAP3-MAP2=-0.8± 0.8 mm Hg (p=0.27),and MAP3/HR3-MAP2/HR2= 0.017±0.018 mm Hg/bpm (p=0.37).Among tamoxifen subjects, MAP3-MAP2=-0.1±0.7 mm Hg  (p= 0.94),and MAP3/HR3-MAP2/HR2=-0.022± 0.016 mm Hg/bpm (p=0.19).
  57. It is possible that the regression model could have been refined still further. When the normotensive subjects were classified by the presence or absence of arteriovenous narrowing, and this categorical factor was added to the three quantitative factors (MAP2/HR2,ΔT, and Δ(MAP/HR), all four factors were significant in an analysis of covariance (p=0.001,p=0.003,p=0.016,and p=0.021,respectively). Arteriovenous narrowing was associated with more selective suppression of the response from LWS cones.
  58. A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).
  59. S. L. Graham, S. M. Drance, “Nocturnal hypotension: role in glaucoma progression,” Surv. Ophthalmol. 43, S10–S16 (1999).
    [CrossRef] [PubMed]
  60. S. S. Hayreh, “Role of nocturnal arterial hypotension in the development of ocular manifestations of systemic arterial hypertension,” Curr. Opin. Ophthalmol. 10, 474–482 (1999).
    [CrossRef]
  61. G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
    [CrossRef] [PubMed]
  62. W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1982 (1988).
    [CrossRef] [PubMed]
  63. A. Stockman, D. I. A. MacLeod, J. A. Vivien, “Isolation of the middle-and long-wavelength sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
    [CrossRef]
  64. W. H. Swanson, “Chromatic adaptation alters spectral sensitivity at high temporal frequencies,” J. Opt. Soc. Am. A 10, 1294–1303 (1993).
    [CrossRef] [PubMed]
  65. I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
    [CrossRef]
  66. L. Schmetterer, K. Polak, “Role of nitric oxide in the control of ocular blood flow,” Prog. Ret. Eye Res. 20, 823–847 (2001).
    [CrossRef]
  67. M. T. Gewaltig, G. Kojda, “Vasoprotection by nitric oxide: mechanisms and therapeutic potential,” Cardiovasc. Res. 55, 250–260 (2002).
    [CrossRef] [PubMed]
  68. D. Xin, S. A. Bloomfield, “Effects of nitric oxide on horizontal cells in the rabbit retina,” Visual Neurosci 17, 799–811 (2000).
    [CrossRef]
  69. D. C. Hood, “Lower-level visual processing and models of light adaptation,” Annu. Rev. Psychol. 49, 503–535 (1998).
    [CrossRef] [PubMed]
  70. K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
    [CrossRef] [PubMed]
  71. B. Falsini, C. E. Riva, E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Visual Sci. 43, 2309–2316 (2002).
  72. A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells?” Appl. Opt. 30, 2121–2135 (1991).
    [CrossRef] [PubMed]
  73. A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).
  74. J. S. Werner, V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
    [CrossRef] [PubMed]
  75. J. S. Werner, M. L. Bieber, B. E. Schefrin, “Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density,” J. Opt. Soc. Am. A 17, 1918–1932 (2000).
    [CrossRef]
  76. C. A. Johnson, A. J. Adams, J. D. Twelker, J. M. Quigg, “Age-related changes in the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988).
    [CrossRef] [PubMed]
  77. G. Haegerstrom-Portnoy, “Short-wavelength-sensitive-cone sensitivity loss with aging: a protective role for macular pigment?” J. Opt. Soc. Am. A 5, 2140–2144 (1988).
    [CrossRef] [PubMed]
  78. B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Preservation of visual sensitivity of older subjects: association with macular pigment density,” Invest. Ophthalmol. Visual Sci. 39, 397–406 (1998).
  79. T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
    [CrossRef] [PubMed]
  80. I. Hindmarch, “Instrumental assessment of psychomotor functions and the effects of psychotropic drugs,” Acta Psychiatr. Scand. Suppl. 380, 49–52 (1994).
    [CrossRef] [PubMed]
  81. S. Curran, “Critical flicker fusion techniques in psychopharmacology,” in Human Psychopharmacology, I. Hindmarch, P. D. Stonier, eds. (Wiley, Chichester, West Sussex, UK, 1990), pp. 21–38.
  82. B. R. Hammond, R. M. Warner, K. Fuld, “Blood pressure and sensitivity to flicker,” J. Psychophysiol. 9, 212–220 (1995).
  83. A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

2003

R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
[CrossRef] [PubMed]

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

N. D. Wangsa-Wirawan, R. A. Linsenmeier, “Retinal oxygen: fundamental and clinical aspects,” Arch. Ophthalmol. 121, 547–557 (2003).
[CrossRef] [PubMed]

2002

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

K. Polak, L. Schmetterer, C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Visual Sci. 43, 2721–2726 (2002).

G. Michelson, A. Patzelt, J. Harazny, “Flickering light increases retinal blood flow,” Retina 22, 336–343 (2002).
[CrossRef] [PubMed]

I. A. Bhutto, T. Amemiya, “Choroidal vasculature changes in spontaneously hypertensive rats—transmission electron microscopy and scanning electron microscopy with casts,” Ophthalmic Res. 34, 54–62 (2002).
[CrossRef] [PubMed]

M. T. Gewaltig, G. Kojda, “Vasoprotection by nitric oxide: mechanisms and therapeutic potential,” Cardiovasc. Res. 55, 250–260 (2002).
[CrossRef] [PubMed]

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

B. Falsini, C. E. Riva, E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Visual Sci. 43, 2309–2316 (2002).

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

2001

I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
[CrossRef]

L. Schmetterer, K. Polak, “Role of nitric oxide in the control of ocular blood flow,” Prog. Ret. Eye Res. 20, 823–847 (2001).
[CrossRef]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

A. Eisner, “Flashed stimuli and the suppression of flicker response from long-wavelength-sensitive cones: integrating two separate approaches,” J. Opt. Soc. Am. A 18, 2957–2968 (2001).
[CrossRef]

J. M. Wild, “Short wavelength automated perimetry,” Acta Ophthalmol. Scand. 79, 546–559 (2001).
[CrossRef]

2000

J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
[CrossRef]

P. A. Sample, “Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function,” Prog. Ret. Eye Res. 19, 369–383 (2000).
[CrossRef]

A. Eisner, J. R. Samples, “Flicker sensitivity and cardiovascular function in healthy middle-aged people,” Arch. Ophthalmol. 118, 1049–1055 (2000).
[CrossRef] [PubMed]

L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

C. Delaey, J. Van De Voorde, “Regulatory mechanisms in the retinal and choroidal circulation,” Ophthalmic Res. 32, 249–256 (2000).
[CrossRef] [PubMed]

J. J. Steinle, D. Krizsan-Agbas, P. G. Smith, “Regional regulation of choroidal blood flow by autonomic innervation in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R202–R209 (2000).
[PubMed]

D. Xin, S. A. Bloomfield, “Effects of nitric oxide on horizontal cells in the rabbit retina,” Visual Neurosci 17, 799–811 (2000).
[CrossRef]

P. M. Pearson, W. H. Swanson, “Chromatic contrast sensitivity: the role of absolute threshold and gain constant in differences between the fovea and the periphery,” J. Opt. Soc. Am. A 17, 232–243 (2000).
[CrossRef]

A. Stockman, L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

J. S. Werner, M. L. Bieber, B. E. Schefrin, “Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density,” J. Opt. Soc. Am. A 17, 1918–1932 (2000).
[CrossRef]

1999

S. L. Graham, S. M. Drance, “Nocturnal hypotension: role in glaucoma progression,” Surv. Ophthalmol. 43, S10–S16 (1999).
[CrossRef] [PubMed]

S. S. Hayreh, “Role of nocturnal arterial hypotension in the development of ocular manifestations of systemic arterial hypertension,” Curr. Opin. Ophthalmol. 10, 474–482 (1999).
[CrossRef]

A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
[CrossRef] [PubMed]

1998

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

A. Eisner, A. G. Shapiro, J. A. Middleton, “Equivalence between temporal frequency and modulation depth for flicker response suppression: analysis of a three-process model of visual adaptation,” J. Opt. Soc. Am. A 15, 1987–2002 (1998).
[CrossRef]

D. C. Hood, “Lower-level visual processing and models of light adaptation,” Annu. Rev. Psychol. 49, 503–535 (1998).
[CrossRef] [PubMed]

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Preservation of visual sensitivity of older subjects: association with macular pigment density,” Invest. Ophthalmol. Visual Sci. 39, 397–406 (1998).

1997

C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).

M. Kondo, L. Wang, A. Bill, “The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats,” Acta Ophthalmol. Scand. 75, 232–235 (1997).
[CrossRef] [PubMed]

1996

S. S. Hayreh, “Duke–Elder lecture. Systemic arterial blood pressure and the eye,” Eye 10, 5–28 (1996).
[CrossRef]

1995

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
[CrossRef]

B. R. Hammond, R. M. Warner, K. Fuld, “Blood pressure and sensitivity to flicker,” J. Psychophysiol. 9, 212–220 (1995).

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

1994

I. Hindmarch, “Instrumental assessment of psychomotor functions and the effects of psychotropic drugs,” Acta Psychiatr. Scand. Suppl. 380, 49–52 (1994).
[CrossRef] [PubMed]

I. D. Cadenas, E. S. Reifsnider, D. Tranchina, “Modulation of synaptic transfer between retinal cones and horizontal cells by spatial contrast,” J. Gen. Physiol. 104, 567–591 (1994).
[CrossRef] [PubMed]

A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
[CrossRef] [PubMed]

1993

1992

A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).

1991

1990

R. Pflug, R. Nelson, P. K. Ahnelt, “Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties,” J. Neurophysiol. 64, 313–325 (1990).
[PubMed]

1988

1987

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).

1986

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

A. Eisner, “Multiple components in photopic dark adaptation,” J. Opt. Soc. Am. A 3, 655–666 (1986).
[CrossRef] [PubMed]

1982

A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).

1981

Adams, A. J.

C. A. Johnson, A. J. Adams, J. D. Twelker, J. M. Quigg, “Age-related changes in the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988).
[CrossRef] [PubMed]

A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).

Ahnelt, P. K.

R. Pflug, R. Nelson, P. K. Ahnelt, “Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties,” J. Neurophysiol. 64, 313–325 (1990).
[PubMed]

Algra, D.

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

Alm, A.

G. A. Cioffi, E. Granstam, A. Alm, “Ocular circulation,” in Adler’s Physiology of the Eye, 10th ed., P. L. Kaufman, A. Alm, eds. (Mosby, St. Louis, Mo., 2003), pp. 747–784.

Amemiya, T.

I. A. Bhutto, T. Amemiya, “Choroidal vasculature changes in spontaneously hypertensive rats—transmission electron microscopy and scanning electron microscopy with casts,” Ophthalmic Res. 34, 54–62 (2002).
[CrossRef] [PubMed]

Arden, G. B.

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

Asrani, S.

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

Austin, D. F.

A. Eisner, D. F. Austin, J. R. Samples, “Short wavelength automated perimetry and tamoxifen use,” Br. J. Ophthamol. (to be published).

Badcock, D. R.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

Bellini, G.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Beny, J. L.

I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
[CrossRef]

Bernardi, P.

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

Berne, R. M.

R. M. Berne, M. L. Levy, Cardiovascular Physiology, 8th ed. (Mosby, St. Louis, Mo., 2001).

Bhutto, I. A.

I. A. Bhutto, T. Amemiya, “Choroidal vasculature changes in spontaneously hypertensive rats—transmission electron microscopy and scanning electron microscopy with casts,” Ophthalmic Res. 34, 54–62 (2002).
[CrossRef] [PubMed]

Bieber, M. L.

Bill, A.

M. Kondo, L. Wang, A. Bill, “The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats,” Acta Ophthalmol. Scand. 75, 232–235 (1997).
[CrossRef] [PubMed]

Blank, G.

L. Wilkinson, G. Blank, C. Gruber, Desktop Data Analysis with SYSTAT (Prentice-Hall, Upper Saddle River, N.J., 1996).

Bloomfield, S. A.

D. Xin, S. A. Bloomfield, “Effects of nitric oxide on horizontal cells in the rabbit retina,” Visual Neurosci 17, 799–811 (2000).
[CrossRef]

Bocin, E.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Bonomi, L.

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

Bornstein, R.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Bowman, D. M.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Cadenas, I. D.

I. D. Cadenas, E. S. Reifsnider, D. Tranchina, “Modulation of synaptic transfer between retinal cones and horizontal cells by spatial contrast,” J. Gen. Physiol. 104, 567–591 (1994).
[CrossRef] [PubMed]

Campbell, H. M.

A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
[CrossRef]

A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
[CrossRef] [PubMed]

Chung, H. S.

A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
[CrossRef] [PubMed]

Cioffi, G. A.

A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
[CrossRef]

A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
[CrossRef] [PubMed]

G. A. Cioffi, E. Granstam, A. Alm, “Ocular circulation,” in Adler’s Physiology of the Eye, 10th ed., P. L. Kaufman, A. Alm, eds. (Mosby, St. Louis, Mo., 2003), pp. 747–784.

Ciulla, T. A.

A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
[CrossRef] [PubMed]

Cosenzi, A.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Costantino, J. P.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Cruickshanks, K. J.

R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
[CrossRef] [PubMed]

Curran, S.

S. Curran, “Critical flicker fusion techniques in psychopharmacology,” in Human Psychopharmacology, I. Hindmarch, P. D. Stonier, eds. (Wiley, Chichester, West Sussex, UK, 1990), pp. 21–38.

Das, M.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Day, R.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

de Jong, P. T.

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

Delaey, C.

C. Delaey, J. Van De Voorde, “Regulatory mechanisms in the retinal and choroidal circulation,” Ophthalmic Res. 32, 249–256 (2000).
[CrossRef] [PubMed]

Dielemans, I.

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

Dimitrov, N. V.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Dorner, G. T.

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

Drance, S. M.

S. L. Graham, S. M. Drance, “Nocturnal hypotension: role in glaucoma progression,” Surv. Ophthalmol. 43, S10–S16 (1999).
[CrossRef] [PubMed]

Eisner, A.

A. Eisner, “Flashed stimuli and the suppression of flicker response from long-wavelength-sensitive cones: integrating two separate approaches,” J. Opt. Soc. Am. A 18, 2957–2968 (2001).
[CrossRef]

A. Eisner, J. R. Samples, “Flicker sensitivity and cardiovascular function in healthy middle-aged people,” Arch. Ophthalmol. 118, 1049–1055 (2000).
[CrossRef] [PubMed]

A. Eisner, A. G. Shapiro, J. A. Middleton, “Equivalence between temporal frequency and modulation depth for flicker response suppression: analysis of a three-process model of visual adaptation,” J. Opt. Soc. Am. A 15, 1987–2002 (1998).
[CrossRef]

A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
[CrossRef]

A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
[CrossRef] [PubMed]

A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).

A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells?” Appl. Opt. 30, 2121–2135 (1991).
[CrossRef] [PubMed]

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).

A. Eisner, “Multiple components in photopic dark adaptation,” J. Opt. Soc. Am. A 3, 655–666 (1986).
[CrossRef] [PubMed]

A. Eisner, D. I. A. Macleod, “Flicker photometric study of chromatic adaption: selective suppression of cone inputs by colored backgrounds,” J. Opt. Soc. Am. 71, 705–717 (1981).
[CrossRef] [PubMed]

A. Eisner, D. F. Austin, J. R. Samples, “Short wavelength automated perimetry and tamoxifen use,” Br. J. Ophthamol. (to be published).

Falsini, B.

B. Falsini, C. E. Riva, E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Visual Sci. 43, 2309–2316 (2002).

Fisher, B.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Flammer, J.

I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
[CrossRef]

Fleming, S. A.

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).

Frumkes, T. E.

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

Fuchsjager-Mayrl, G.

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

Fuld, K.

B. R. Hammond, R. M. Warner, K. Fuld, “Blood pressure and sensitivity to flicker,” J. Psychophysiol. 9, 212–220 (1995).

Galea, A.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Garhofer, G.

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

Gewaltig, M. T.

M. T. Gewaltig, G. Kojda, “Vasoprotection by nitric oxide: mechanisms and therapeutic potential,” Cardiovasc. Res. 55, 250–260 (2002).
[CrossRef] [PubMed]

Gomolin, J. E.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Gorin, M. B.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Graham, S. L.

S. L. Graham, S. M. Drance, “Nocturnal hypotension: role in glaucoma progression,” Surv. Ophthalmol. 43, S10–S16 (1999).
[CrossRef] [PubMed]

Granstam, E.

G. A. Cioffi, E. Granstam, A. Alm, “Ocular circulation,” in Adler’s Physiology of the Eye, 10th ed., P. L. Kaufman, A. Alm, eds. (Mosby, St. Louis, Mo., 2003), pp. 747–784.

Grobbee, D. E.

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

Gruber, C.

L. Wilkinson, G. Blank, C. Gruber, Desktop Data Analysis with SYSTAT (Prentice-Hall, Upper Saddle River, N.J., 1996).

Guyton, A. C.

A. C. Guyton, J. E. Hall, Textbook of Medical Physiology, 10th ed. (Saunders, Philadelphia, Pa., 2000).

Haefliger, I. O.

I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
[CrossRef]

Haegerstrom-Portnoy, G.

Hall, J. E.

A. C. Guyton, J. E. Hall, Textbook of Medical Physiology, 10th ed. (Saunders, Philadelphia, Pa., 2000).

Hammond, B. R.

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Preservation of visual sensitivity of older subjects: association with macular pigment density,” Invest. Ophthalmol. Visual Sci. 39, 397–406 (1998).

B. R. Hammond, R. M. Warner, K. Fuld, “Blood pressure and sensitivity to flicker,” J. Psychophysiol. 9, 212–220 (1995).

Harazny, J.

G. Michelson, A. Patzelt, J. Harazny, “Flickering light increases retinal blood flow,” Retina 22, 336–343 (2002).
[CrossRef] [PubMed]

Harris, A.

A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
[CrossRef] [PubMed]

Hayreh, S. S.

S. S. Hayreh, “Role of nocturnal arterial hypotension in the development of ocular manifestations of systemic arterial hypertension,” Curr. Opin. Ophthalmol. 10, 474–482 (1999).
[CrossRef]

S. S. Hayreh, “Duke–Elder lecture. Systemic arterial blood pressure and the eye,” Eye 10, 5–28 (1996).
[CrossRef]

He, Q.

L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
[CrossRef] [PubMed]

Hero, M.

C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).

Heywood, J. T.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

Hindmarch, I.

I. Hindmarch, “Instrumental assessment of psychomotor functions and the effects of psychotropic drugs,” Acta Psychiatr. Scand. Suppl. 380, 49–52 (1994).
[CrossRef] [PubMed]

Hofman, A.

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

Hood, D. C.

D. C. Hood, “Lower-level visual processing and models of light adaptation,” Annu. Rev. Psychol. 49, 503–535 (1998).
[CrossRef] [PubMed]

Hubbard, L.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Huemer, K. H.

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

Husted, R.

A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).

Hyman, L.

L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
[CrossRef] [PubMed]

Imhof, A.

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

Jandrasits, K.

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

Johnson, C. A.

Kagemann, L.

A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
[CrossRef] [PubMed]

Kaufman, D. I.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Kaufmann, D.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Kiryu, J.

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

Klein, B. E.

R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
[CrossRef] [PubMed]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).

Klein, M. L.

A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).

Klein, R.

R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
[CrossRef] [PubMed]

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).

Kojda, G.

M. T. Gewaltig, G. Kojda, “Vasoprotection by nitric oxide: mechanisms and therapeutic potential,” Cardiovasc. Res. 55, 250–260 (2002).
[CrossRef] [PubMed]

Kondo, M.

M. Kondo, L. Wang, A. Bill, “The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats,” Acta Ophthalmol. Scand. 75, 232–235 (1997).
[CrossRef] [PubMed]

Krizsan-Agbas, D.

J. J. Steinle, D. Krizsan-Agbas, P. G. Smith, “Regional regulation of choroidal blood flow by autonomic innervation in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R202–R209 (2000).
[PubMed]

Kumari, V.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Lee, B. B.

J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
[CrossRef]

Leske, M. C.

L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
[CrossRef] [PubMed]

Levy, M. L.

R. M. Berne, M. L. Levy, Cardiovascular Physiology, 8th ed. (Mosby, St. Louis, Mo., 2001).

Linsenmeier, R. A.

N. D. Wangsa-Wirawan, R. A. Linsenmeier, “Retinal oxygen: fundamental and clinical aspects,” Arch. Ophthalmol. 121, 547–557 (2003).
[CrossRef] [PubMed]

Logean, E.

B. Falsini, C. E. Riva, E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Visual Sci. 43, 2309–2316 (2002).

Luksch, A.

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

Luscher, T. F.

I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
[CrossRef]

MacLeod, D. I. A.

Malec, M.

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

Marchini, G.

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

Margolese, R. G.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Marraffa, M.

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

Mathen, M. K.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Mauldin, W. M.

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).

McKendrick, A. M.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

Meuer, S. M.

R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).

Michelson, G.

G. Michelson, A. Patzelt, J. Harazny, “Flickering light increases retinal blood flow,” Retina 22, 336–343 (2002).
[CrossRef] [PubMed]

Middleton, J. A.

Molino, R.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Morbio, R.

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

Mori, M.

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

Moss, S. E.

R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).

Nelson, R.

R. Pflug, R. Nelson, P. K. Ahnelt, “Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties,” J. Neurophysiol. 64, 313–325 (1990).
[PubMed]

Nieto, F. J.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Patzelt, A.

G. Michelson, A. Patzelt, J. Harazny, “Flickering light increases retinal blood flow,” Retina 22, 336–343 (2002).
[CrossRef] [PubMed]

Pearson, P. M.

Petrig, B. L.

C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).

Pflug, R.

R. Pflug, R. Nelson, P. K. Ahnelt, “Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties,” J. Neurophysiol. 64, 313–325 (1990).
[PubMed]

Pokorny, J.

J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
[CrossRef]

W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1982 (1988).
[CrossRef] [PubMed]

Polak, K.

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

K. Polak, L. Schmetterer, C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Visual Sci. 43, 2721–2726 (2002).

L. Schmetterer, K. Polak, “Role of nitric oxide in the control of ocular blood flow,” Prog. Ret. Eye Res. 20, 823–847 (2001).
[CrossRef]

Polska, E.

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

Quigg, J. M.

Ravalico, G.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Redmond, C. K.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Reifsnider, E. S.

I. D. Cadenas, E. S. Reifsnider, D. Tranchina, “Modulation of synaptic transfer between retinal cones and horizontal cells by spatial contrast,” J. Gen. Physiol. 104, 567–591 (1994).
[CrossRef] [PubMed]

Riva, C. E.

K. Polak, L. Schmetterer, C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Visual Sci. 43, 2721–2726 (2002).

B. Falsini, C. E. Riva, E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Visual Sci. 43, 2309–2316 (2002).

C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).

Rodic, R.

A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).

Ruprah, M.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Sacerdote, A.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Sample, P. A.

P. A. Sample, “Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function,” Prog. Ret. Eye Res. 19, 369–383 (2000).
[CrossRef]

Samples, J. R.

A. Eisner, J. R. Samples, “Flicker sensitivity and cardiovascular function in healthy middle-aged people,” Arch. Ophthalmol. 118, 1049–1055 (2000).
[CrossRef] [PubMed]

A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
[CrossRef]

A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
[CrossRef] [PubMed]

A. Eisner, J. R. Samples, “Profound reductions of flicker sensitivity in the elderly: can glaucoma involve the retina distal to ganglion cells?” Appl. Opt. 30, 2121–2135 (1991).
[CrossRef] [PubMed]

A. Eisner, D. F. Austin, J. R. Samples, “Short wavelength automated perimetry and tamoxifen use,” Br. J. Ophthamol. (to be published).

Schachat, A. P.

L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
[CrossRef] [PubMed]

Schefrin, B. E.

Schering, J.

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

Schmetterer, L.

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

K. Polak, L. Schmetterer, C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Visual Sci. 43, 2721–2726 (2002).

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

L. Schmetterer, K. Polak, “Role of nitric oxide in the control of ocular blood flow,” Prog. Ret. Eye Res. 20, 823–847 (2001).
[CrossRef]

Shahidi, M.

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

Shapiro, A. G.

Sharma, T.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Sharpe, L. T.

A. Stockman, L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

Singerman, L. J.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Smith, P. G.

J. J. Steinle, D. Krizsan-Agbas, P. G. Smith, “Regional regulation of choroidal blood flow by autonomic innervation in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R202–R209 (2000).
[PubMed]

Smith, V. C.

J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
[CrossRef]

W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1982 (1988).
[CrossRef] [PubMed]

Snodderly, D. M.

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Preservation of visual sensitivity of older subjects: association with macular pigment density,” Invest. Ophthalmol. Visual Sci. 39, 397–406 (1998).

Solimano, N.

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Soregi, G.

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

Stamper, R.

A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).

Steele, V. G.

Steinle, J. J.

J. J. Steinle, D. Krizsan-Agbas, P. G. Smith, “Regional regulation of choroidal blood flow by autonomic innervation in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R202–R209 (2000).
[PubMed]

Stockman, A.

A. Stockman, L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

A. Stockman, D. I. A. MacLeod, J. A. Vivien, “Isolation of the middle-and long-wavelength sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
[CrossRef]

Swanson, W. H.

Taylor, D.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Tielsch, J. M.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Titze, P.

C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).

Tomany, S. C.

R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
[CrossRef] [PubMed]

Tranchina, D.

I. D. Cadenas, E. S. Reifsnider, D. Tranchina, “Modulation of synaptic transfer between retinal cones and horizontal cells by spatial contrast,” J. Gen. Physiol. 104, 567–591 (1994).
[CrossRef] [PubMed]

Twelker, J. D.

Van De Voorde, J.

C. Delaey, J. Van De Voorde, “Regulatory mechanisms in the retinal and choroidal circulation,” Ophthalmic Res. 32, 249–256 (2000).
[CrossRef] [PubMed]

Varotto, A.

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

Vingerling, J. R.

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

Vingrys, A. J.

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

Vivien, J. A.

Wang, L.

M. Kondo, L. Wang, A. Bill, “The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats,” Acta Ophthalmol. Scand. 75, 232–235 (1997).
[CrossRef] [PubMed]

Wangsa-Wirawan, N. D.

N. D. Wangsa-Wirawan, R. A. Linsenmeier, “Retinal oxygen: fundamental and clinical aspects,” Arch. Ophthalmol. 121, 547–557 (2003).
[CrossRef] [PubMed]

Warner, R. M.

B. R. Hammond, R. M. Warner, K. Fuld, “Blood pressure and sensitivity to flicker,” J. Psychophysiol. 9, 212–220 (1995).

Watkins, M. D.

A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).

Werner, J. S.

Wickerham, L.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Wild, J. M.

J. M. Wild, “Short wavelength automated perimetry,” Acta Ophthalmol. Scand. 79, 546–559 (2001).
[CrossRef]

Wilkinson, L.

L. Wilkinson, G. Blank, C. Gruber, Desktop Data Analysis with SYSTAT (Prentice-Hall, Upper Saddle River, N.J., 1996).

Wolmark, N.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Wolst, M.

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

Wong, T. Y.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

Wooten, B. R.

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Preservation of visual sensitivity of older subjects: association with macular pigment density,” Invest. Ophthalmol. Visual Sci. 39, 397–406 (1998).

Xin, D.

D. Xin, S. A. Bloomfield, “Effects of nitric oxide on horizontal cells in the rabbit retina,” Visual Neurosci 17, 799–811 (2000).
[CrossRef]

Yeh, T.

J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
[CrossRef]

Zachariah, E.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

Zawinka, C.

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

Zeimer, R.

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

Zilis, J. D.

A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).

Acta Ophthalmol. Scand.

M. Kondo, L. Wang, A. Bill, “The role of nitric oxide in hyperaemic response to flicker in the retina and optic nerve in cats,” Acta Ophthalmol. Scand. 75, 232–235 (1997).
[CrossRef] [PubMed]

J. M. Wild, “Short wavelength automated perimetry,” Acta Ophthalmol. Scand. 79, 546–559 (2001).
[CrossRef]

Acta Psychiatr. Scand. Suppl.

I. Hindmarch, “Instrumental assessment of psychomotor functions and the effects of psychotropic drugs,” Acta Psychiatr. Scand. Suppl. 380, 49–52 (1994).
[CrossRef] [PubMed]

Am. J. Ophthalmol.

M. B. Gorin, R. Day, J. P. Costantino, B. Fisher, C. K. Redmond, L. Wickerham, J. E. Gomolin, R. G. Margolese, M. K. Mathen, D. M. Bowman, D. I. Kaufman, N. V. Dimitrov, L. J. Singerman, R. Bornstein, N. Wolmark, D. Kaufmann, “Long-term tamoxifen citrate use and potential ocular toxicity,” Am. J. Ophthalmol. 125, 493–501 (1998).
[CrossRef] [PubMed]

Am. J. Physiol. Regul. Integr. Comp. Physiol.

J. J. Steinle, D. Krizsan-Agbas, P. G. Smith, “Regional regulation of choroidal blood flow by autonomic innervation in the rat,” Am. J. Physiol. Regul. Integr. Comp. Physiol. 279, R202–R209 (2000).
[PubMed]

Annu. Rev. Psychol.

D. C. Hood, “Lower-level visual processing and models of light adaptation,” Annu. Rev. Psychol. 49, 503–535 (1998).
[CrossRef] [PubMed]

Appl. Opt.

Arch. Ophthalmol.

L. Hyman, A. P. Schachat, Q. He, M. C. Leske, “Hypertension, cardiovascular disease, and age-related macular degeneration. Age-Related Macular Degeneration Risk Factors Study Group,” Arch. Ophthalmol. 118, 351–358 (2000).
[CrossRef] [PubMed]

A. Eisner, J. R. Samples, “Flicker sensitivity and cardiovascular function in healthy middle-aged people,” Arch. Ophthalmol. 118, 1049–1055 (2000).
[CrossRef] [PubMed]

N. D. Wangsa-Wirawan, R. A. Linsenmeier, “Retinal oxygen: fundamental and clinical aspects,” Arch. Ophthalmol. 121, 547–557 (2003).
[CrossRef] [PubMed]

Cardiovasc. Res.

M. T. Gewaltig, G. Kojda, “Vasoprotection by nitric oxide: mechanisms and therapeutic potential,” Cardiovasc. Res. 55, 250–260 (2002).
[CrossRef] [PubMed]

Color Res. Appl.

J. Pokorny, V. C. Smith, B. B. Lee, T. Yeh, “Temporal sensitivity of macaque ganglion cells to lights of different chromaticity,” Color Res. Appl. 26, S140–S144 (2000).
[CrossRef]

Curr. Eye Res.

G. Garhofer, K. H. Huemer, C. Zawinka, L. Schmetterer, G. T. Dorner, “Influence of diffuse luminance flicker on choroidal and optic nerve head blood flow,” Curr. Eye Res. 24, 109–113 (2002).
[CrossRef] [PubMed]

Curr. Opin. Ophthalmol.

S. S. Hayreh, “Role of nocturnal arterial hypotension in the development of ocular manifestations of systemic arterial hypertension,” Curr. Opin. Ophthalmol. 10, 474–482 (1999).
[CrossRef]

Eye

S. S. Hayreh, “Duke–Elder lecture. Systemic arterial blood pressure and the eye,” Eye 10, 5–28 (1996).
[CrossRef]

Hypertension

G. Bellini, E. Bocin, A. Cosenzi, A. Sacerdote, R. Molino, N. Solimano, G. Ravalico, “Oscillatory potentials of the electroretinogram in hypertensive patients,” Hypertension 25, 839–841 (1995).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

A. Eisner, M. L. Klein, J. D. Zilis, M. D. Watkins, “Visual function and the subsequent development of exudative age-related macular degeneration,” Invest. Ophthalmol. Visual Sci. 33, 3091–3102 (1992).

A. J. Adams, R. Rodic, R. Husted, R. Stamper, “Spectral sensitivity and color discrimination changes in glaucoma and glaucoma-suspect patients,” Invest. Ophthalmol. Visual Sci. 23, 516–524 (1982).

B. Falsini, C. E. Riva, E. Logean, “Flicker-evoked changes in human optic nerve blood flow: relationship with retinal neural activity,” Invest. Ophthalmol. Visual Sci. 43, 2309–2316 (2002).

A. Eisner, S. A. Fleming, M. L. Klein, W. M. Mauldin, “Sensitivities in older eyes with good acuity: cross-sectional norms,” Invest. Ophthalmol. Visual Sci. 28, 1824–1831 (1987).

B. R. Hammond, B. R. Wooten, D. M. Snodderly, “Preservation of visual sensitivity of older subjects: association with macular pigment density,” Invest. Ophthalmol. Visual Sci. 39, 397–406 (1998).

A. M. McKendrick, A. J. Vingrys, D. R. Badcock, J. T. Heywood, “Visual field losses in subjects with migraine headaches,” Invest. Ophthalmol. Visual Sci. 41, 1239–1247 (2000).

C. E. Riva, P. Titze, M. Hero, B. L. Petrig, “Effect of acute decreases of perfusion pressure on choroidal blood flow in humans,” Invest. Ophthalmol. Visual Sci. 38, 1752–1760 (1997).

A. Luksch, E. Polska, A. Imhof, J. Schering, G. Fuchsjager-Mayrl, M. Wolst, L. Schmetterer, “Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 734–739 (2003).
[CrossRef]

G. Fuchsjager-Mayrl, A. Luksch, M. Malec, E. Polska, M. Wolst, L. Schmetterer, “Role of endothelin-1 in choroidal blood flow regulation during isometric exercise in healthy humans,” Invest. Ophthalmol. Visual Sci. 44, 728–733 (2003).
[CrossRef]

K. Polak, L. Schmetterer, C. E. Riva, “Influence of flicker frequency on flicker-induced changes of retinal vessel diameter,” Invest. Ophthalmol. Visual Sci. 43, 2721–2726 (2002).

J. Kiryu, S. Asrani, M. Shahidi, M. Mori, R. Zeimer, “Local response of the primate retinal microcirculation to increased metabolic demand induced by flicker,” Invest. Ophthalmol. Visual Sci. 36, 1240–1246 (1995).

J. Gen. Physiol.

I. D. Cadenas, E. S. Reifsnider, D. Tranchina, “Modulation of synaptic transfer between retinal cones and horizontal cells by spatial contrast,” J. Gen. Physiol. 104, 567–591 (1994).
[CrossRef] [PubMed]

J. Glaucoma

A. Eisner, G. A. Cioffi, H. M. Campbell, J. R. Samples, “Foveal flicker sensitivity abnormalities in early glaucoma: associations with high blood pressure,” J. Glaucoma 3, S19–S31 (1994).
[CrossRef] [PubMed]

J. Neurophysiol.

R. Pflug, R. Nelson, P. K. Ahnelt, “Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties,” J. Neurophysiol. 64, 313–325 (1990).
[PubMed]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

A. Stockman, D. I. A. MacLeod, J. A. Vivien, “Isolation of the middle-and long-wavelength sensitive cones in normal trichromats,” J. Opt. Soc. Am. A 10, 2471–2490 (1993).
[CrossRef]

J. S. Werner, M. L. Bieber, B. E. Schefrin, “Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density,” J. Opt. Soc. Am. A 17, 1918–1932 (2000).
[CrossRef]

A. Eisner, “Flashed stimuli and the suppression of flicker response from long-wavelength-sensitive cones: integrating two separate approaches,” J. Opt. Soc. Am. A 18, 2957–2968 (2001).
[CrossRef]

P. M. Pearson, W. H. Swanson, “Chromatic contrast sensitivity: the role of absolute threshold and gain constant in differences between the fovea and the periphery,” J. Opt. Soc. Am. A 17, 232–243 (2000).
[CrossRef]

A. Eisner, A. G. Shapiro, J. A. Middleton, “Equivalence between temporal frequency and modulation depth for flicker response suppression: analysis of a three-process model of visual adaptation,” J. Opt. Soc. Am. A 15, 1987–2002 (1998).
[CrossRef]

A. Eisner, “Multiple components in photopic dark adaptation,” J. Opt. Soc. Am. A 3, 655–666 (1986).
[CrossRef] [PubMed]

W. H. Swanson, J. Pokorny, V. C. Smith, “Effects of chromatic adaptation on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 5, 1976–1982 (1988).
[CrossRef] [PubMed]

J. S. Werner, V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988).
[CrossRef] [PubMed]

C. A. Johnson, A. J. Adams, J. D. Twelker, J. M. Quigg, “Age-related changes in the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988).
[CrossRef] [PubMed]

G. Haegerstrom-Portnoy, “Short-wavelength-sensitive-cone sensitivity loss with aging: a protective role for macular pigment?” J. Opt. Soc. Am. A 5, 2140–2144 (1988).
[CrossRef] [PubMed]

W. H. Swanson, “Chromatic adaptation alters spectral sensitivity at high temporal frequencies,” J. Opt. Soc. Am. A 10, 1294–1303 (1993).
[CrossRef] [PubMed]

A. Eisner, J. R. Samples, H. M. Campbell, G. A. Cioffi, “Foveal adaptation abnormalities in early glaucoma,” J. Opt. Soc. Am. A 12, 2318–2328 (1995).
[CrossRef]

J. Psychopharmacol.

T. Sharma, A. Galea, E. Zachariah, M. Das, D. Taylor, M. Ruprah, V. Kumari, “Effects of 10 mg and 15 mg oral procyclidine on critical flicker fusion threshold and cardiac functioning in healthy human subjects,” J. Psychopharmacol. 16, 183–187 (2002).
[CrossRef] [PubMed]

J. Psychophysiol.

B. R. Hammond, R. M. Warner, K. Fuld, “Blood pressure and sensitivity to flicker,” J. Psychophysiol. 9, 212–220 (1995).

Ophthalmic Res.

I. A. Bhutto, T. Amemiya, “Choroidal vasculature changes in spontaneously hypertensive rats—transmission electron microscopy and scanning electron microscopy with casts,” Ophthalmic Res. 34, 54–62 (2002).
[CrossRef] [PubMed]

C. Delaey, J. Van De Voorde, “Regulatory mechanisms in the retinal and choroidal circulation,” Ophthalmic Res. 32, 249–256 (2000).
[CrossRef] [PubMed]

Ophthalmology

L. Bonomi, G. Marchini, M. Marraffa, P. Bernardi, R. Morbio, A. Varotto, “Vascular risk factors for primary open angle glaucoma: the Egna–Neumarkt Study,” Ophthalmology 107, 1287–1293 (2000).
[CrossRef] [PubMed]

I. Dielemans, J. R. Vingerling, D. Algra, A. Hofman, D. E. Grobbee, P. T. de Jong, “Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure in the general elderly population. The Rotterdam Study,” Ophthalmology 102, 54–60 (1995).
[CrossRef] [PubMed]

R. Klein, B. E. Klein, S. C. Tomany, K. J. Cruickshanks, “The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study,” Ophthalmology 110, 636–650 (2003).
[CrossRef] [PubMed]

K. Jandrasits, A. Luksch, G. Soregi, G. T. Dorner, K. Polak, L. Schmetterer, “Effect of noradrenaline on retinal blood flow in healthy subjects,” Ophthalmology 109, 291–295 (2002).
[CrossRef] [PubMed]

Prog. Ret. Eye Res.

I. O. Haefliger, J. Flammer, J. L. Beny, T. F. Luscher, “Endothelium-dependent vasoactive modulation in the ophthalmic circulation,” Prog. Ret. Eye Res. 20, 209–225 (2001).
[CrossRef]

L. Schmetterer, K. Polak, “Role of nitric oxide in the control of ocular blood flow,” Prog. Ret. Eye Res. 20, 823–847 (2001).
[CrossRef]

P. A. Sample, “Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function,” Prog. Ret. Eye Res. 19, 369–383 (2000).
[CrossRef]

Prog. Retin. Eye Res.

A. Harris, H. S. Chung, T. A. Ciulla, L. Kagemann, “Progress in measurement of ocular blood flow and relevance to our understanding of glaucoma and age-related macular degeneration,” Prog. Retin. Eye Res. 18, 669–687 (1999).
[CrossRef] [PubMed]

Retina

G. Michelson, A. Patzelt, J. Harazny, “Flickering light increases retinal blood flow,” Retina 22, 336–343 (2002).
[CrossRef] [PubMed]

Surv. Ophthalmol.

T. Y. Wong, R. Klein, B. E. Klein, J. M. Tielsch, L. Hubbard, F. J. Nieto, “Retinal microvascular abnormalities and their relationship with hypertension, cardiovascular disease, and mortality,” Surv. Ophthalmol. 46, 59–80 (2001).
[CrossRef] [PubMed]

S. L. Graham, S. M. Drance, “Nocturnal hypotension: role in glaucoma progression,” Surv. Ophthalmol. 43, S10–S16 (1999).
[CrossRef] [PubMed]

Trans. Am. Ophthalmol. Soc.

R. Klein, B. E. Klein, S. E. Moss, S. M. Meuer, “The epidemiology of retinal vein occlusion: the Beaver Dam Eye Study,” Trans. Am. Ophthalmol. Soc. 98, 133–141 (2000).

Vision Res.

A. Stockman, L. T. Sharpe, “The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype,” Vision Res. 40, 1711–1737 (2000).
[CrossRef] [PubMed]

G. B. Arden, T. E. Frumkes, “Stimulation of rods can increase cone flicker ERGs in man,” Vision Res. 26, 711–721 (1986).
[CrossRef] [PubMed]

Visual Neurosci

D. Xin, S. A. Bloomfield, “Effects of nitric oxide on horizontal cells in the rabbit retina,” Visual Neurosci 17, 799–811 (2000).
[CrossRef]

Other

For each of the three types of hypertensive retinopathy characteristics—vascular sclerosis, focal arteriolar constriction, and arteriovenous narrowing—grades were assigned on a five-point scale. For each characteristic, a score of 0 signified that the vasculature was indistinguishable from that of a young healthy person, a score of 1 signified a minimal difference, a score of 2 signified a more marked difference, and a score of 3 signified more difference yet, by itself enough to indicate a high probability of past or present vascular disease. No person tested had a score of 4, and two people were excluded from the study on the basis of sclerosis scores of 3. The distributions of scores for each subject group are given next. The numbers in parentheses refer to the number of subjects assigned a score of 0, 1, or 2, respectively. Focal arteriolar constriction: normotensive subjects (22, 5, 2), hypertensive subjects (22, 4, 1), and tamoxifen subjects (25, 5, 0). Arteriovenous narrowing: normotensive subjects (20, 7, 2), hypertensive subjects (21, 4, 2), and tamoxifen subjects (24, 6, 0). Vascular sclerosis: normotensive subjects (12, 12, 4), hypertensive subjects (15, 9, 3), and tamoxifen subjects (15, 15, 0).

The specific order of testing depended on many considerations, some of which are specified in the text. The 1.6-log-td, 580-nm background preceded the 3.6-log-td, 580-nm background so that the dynamics of recovery of SWS-cone-mediated sensitivity could be assessed after a sudden large increase of background illuminance.40(The dynamics of recovery were affected by tamoxifen.35) The use of a 2.0-log-td, 580-nm background was based on preliminary results that suggested that the crossover points of an MWS–LWS-cone mechanism and an SWS-cone mechanism might differ between the hypertensive and the normotensive subject groups. (This suggestion was not verified on prospective testing.) The 2.0-log-td background preceded all other backgrounds by default, given all the other constraints. The 2.6-log-td, 580-nm background was used in order to assess the effects of background illuminance on flicker sensitivity under conditions in which departures from Weber’s law would not be great. There were several practical reasons for merging the protocols for two investigations (one concerning cardiovascular function and the other concerning effects of tamoxifen). Many of the same subjects served as controls for each investigation, and a second nonhypertensive subject group (the tamoxifen subjects) was used prospectively to confirm and to interpret effects from the normotensive subject group.

A. Eisner, D. F. Austin, J. R. Samples, “Short wavelength automated perimetry and tamoxifen use,” Br. J. Ophthamol. (to be published).

Adding age to the regression equation for ΔFSλ would not have improved the fit of the regression line to the data; the overall correlation would have changed from R=0.57to R=0.58.Nor was age itself correlated with ΔFSλ (Spearman r=-0.09).Age may have been weakly correlated with MAP2/HR2(Spearman r=0.30,p=0.18).

For the normotensive subjects, the regression equation was ΔFSλ=1.20-0.40(MAP2/HR2)+0.29 ΔT.For the tamoxifen subjects, the regression equation was ΔFSλ= 0.96-0.24(MAP2/HR2)+0.29 ΔT.

The rank order correlation between MAP2/HR2and ΔT was Spearman r=-0.02for the normotensive subjects and Spearman r=-0.12for the tamoxifen subjects.

The correlation between an increase of heart rate and a reduction of mean deviation would have remained significant if the data from subjects who were administered 30-2 visual fields were excluded from the calculation.

Among normotensive subjects, MAP3-MAP2=-0.8± 0.8 mm Hg (p=0.27),and MAP3/HR3-MAP2/HR2= 0.017±0.018 mm Hg/bpm (p=0.37).Among tamoxifen subjects, MAP3-MAP2=-0.1±0.7 mm Hg  (p= 0.94),and MAP3/HR3-MAP2/HR2=-0.022± 0.016 mm Hg/bpm (p=0.19).

It is possible that the regression model could have been refined still further. When the normotensive subjects were classified by the presence or absence of arteriovenous narrowing, and this categorical factor was added to the three quantitative factors (MAP2/HR2,ΔT, and Δ(MAP/HR), all four factors were significant in an analysis of covariance (p=0.001,p=0.003,p=0.016,and p=0.021,respectively). Arteriovenous narrowing was associated with more selective suppression of the response from LWS cones.

R. M. Berne, M. L. Levy, Cardiovascular Physiology, 8th ed. (Mosby, St. Louis, Mo., 2001).

A. C. Guyton, J. E. Hall, Textbook of Medical Physiology, 10th ed. (Saunders, Philadelphia, Pa., 2000).

Measurements taken before 2 min were used to show that 440-nm sensitivities had stabilized by 2 min and to verify that SWS cones mediated detection at 440 nm.

A 560-nm, rather than a 540-nm, test was used to eliminate any possibility, however remote, of detection of the test stimulus via SWS cones.

SWAP 30-2 fields were administered for three normotensive subjects, six high-blood-pressure subjects, and two tamoxifen subjects.

L. Wilkinson, G. Blank, C. Gruber, Desktop Data Analysis with SYSTAT (Prentice-Hall, Upper Saddle River, N.J., 1996).

All the variables listed in Table 1were used in conducting a factor analysis for the normotensive subjects’ data. The number of factors was chosen a priorito be four, and a Varimax rotation was used. The first three factors were readily identified as (1) an SWS-cone-sensitivity factor, (2) a flicker-sensitivity factor, and (3) a factor that reflected sensitivities mainly for test wavelengths ranging from approximately 500 to 560 nm on the 2.0-log-td, 580-nm background. The fourth factor was less well defined but reflected sensitivities mainly on the 3.6-log-td, 580-nm background. Because the normotensive group’s maximal sensitivity in the 500- to 580-nm range occurred at 540 nm for the 2.0-log-td, 580-nm background, factor 3 can be identified with an MWS–LWS cone mechanism. Sensitivity to a 580-nm test on the 2.0-log-td 580-nm background was represented approximately equally in factors 2 and 3, and it was the only non-flicker-sensitivity variable with appreciable representation in factor 2.

The threshold elevation from a 2.0- to a 3.6-log-td background did not appear to differ between groups for an SWS-cone mechanism (p=0.380for 440-nm tests), but it may have differed for an MWS–LWS cone mechanism (p= 0.050for 560-nm tests).

The rank order correlations between MAP/HR and logfl. sens.580-logfl. sens.640were computed for the 2.6- and for the 3.6-log-td 580-nm backgrounds. For the normotensive subjects, these rank-order correlations were, respectively, Spearman r=-0.19and Spearman r=0.14.For the high-blood-pressure subjects, the rank-order correlations were, respectively, Spearman r=-0.03and Spearman r=-0.11.

Among normotensive subjects, MAP2-MAP1=-3.3± 1.0 mm Hg (p=0.003),and HR2-HR1=-3.4± 0.6 bpm (p<0.001).Among hypertensive subjects, MAP2-MAP1=-2.4±0.9 mm Hg (p=0.015),and HR2-HR1=-2.5±1.1 bpm (p=0.033).Among tamoxifen subjects, MAP2-MAP1=0.0±0.7 mm Hg (p= 0.99),and HR2-HR1=-2.3±0.8 bpm (p=0.007).

G. A. Cioffi, E. Granstam, A. Alm, “Ocular circulation,” in Adler’s Physiology of the Eye, 10th ed., P. L. Kaufman, A. Alm, eds. (Mosby, St. Louis, Mo., 2003), pp. 747–784.

S. Curran, “Critical flicker fusion techniques in psychopharmacology,” in Human Psychopharmacology, I. Hindmarch, P. D. Stonier, eds. (Wiley, Chichester, West Sussex, UK, 1990), pp. 21–38.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Average of the log sensitivities for detection of flashed test stimuli for 510-, 520-, 540-, and 560-nm flashed stimuli on the 2.0-log-td, 580-nm background, plotted versus age. Hatched symbols, data from normotensive subjects; solid symbols, data from high-blood-pressure subjects.

Fig. 2
Fig. 2

Log sensitivities for detection of flicker for 580-nm test stimuli on the 3.6-log-td, 580-nm background, plotted versus age. Symbols are as in Fig. 1.

Fig. 3
Fig. 3

Steady-state threshold elevation from a 2.0- to a 3.6-log-td, 580-nm background for flashed 580-nm test stimuli, plotted versus age. Symbols are as in Fig. 1.

Fig. 4
Fig. 4

Steady-state threshold elevation from a 2.6- to a 3.6-log-td, 580-nm background for flickering 580-nm test stimuli, plotted versus age. Symbols are as in Fig. 1.

Fig. 5
Fig. 5

Log fl. sens.580-log fl. sens.640 (ΔFSλ) plotted versus MAP2/HR2 for normotensive subjects and for hypertensive subjects. The upper dashed line represents the approximate flicker-sensitivity difference when MWS cones are completely isolated, and the lower dashed line represents the approximate flicker-sensitivity difference when LWS cones are completely isolated. Symbols are as in Fig. 1.

Tables (2)

Tables Icon

Table 1 Correlations of Visual Sensitivities with Age a

Tables Icon

Table 2 Correlations of Cardiovascular Variables with Log Fl. Sens.580-Log Fl. Sens.640 (=ΔFSλ) a

Metrics