Abstract

Conditions of surface-plasmon resonance (SPR) production with use of IR pumping light (800–2300 nm) in the Kretschmann–Raether prism arrangement were investigated. Both calculations and experimental data showed that SPR characteristics in the IR are strongly influenced by the properties of the coupling prism material. Indeed, quite different regularities of plasmon excitation, polarity of sensing response, and sensitivity are observed for two different glasses and silicon. The observed differences in SPR properties are related to essentially different behavior of dispersion characteristics of materials near the SPR coupling point. Methods for improving sensor performance and miniaturizing the SPR technique using novel coupling materials (silicon) are discussed.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, “Advances in Research and Development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), pp. 145–261.
  2. E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
    [CrossRef]
  3. E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).
  4. B. Liedberg, C. Nylander, I. Lundstrum, “Surface-plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
    [CrossRef]
  5. B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface-plasmon resonance–how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
    [CrossRef]
  6. J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
    [CrossRef]
  7. P. Schuck, “Use of surface-plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
    [CrossRef]
  8. L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface-plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
    [CrossRef]
  9. R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
    [CrossRef]
  10. F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface-plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
    [CrossRef]
  11. A. V. Kabashin, P. I. Nikitin, “Surface-plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
    [CrossRef]
  12. A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface-plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
    [CrossRef]
  13. P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).
    [CrossRef] [PubMed]
  14. S. Lofas, “Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface-plasmon resonance,” Pure Appl. Chem. 67, 829–834 (1995).
    [CrossRef]
  15. V. M. Agranovich, D. L. Mills, eds., Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982).
  16. H. de Bruijn, R. Kooyman, J. Greve, “Choice of metal and wavelength for surface-plasmon resonance sensors: some considerations,” Appl. Opt. 31, 440–442 (1992).
    [CrossRef]
  17. R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
    [CrossRef]
  18. K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
    [CrossRef]
  19. A. G. Frutos, S. C. Weibel, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy,” Anal. Chem. 71, 3935–3940 (1999).
    [CrossRef]
  20. B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
    [CrossRef]
  21. K. Kurihara, K. Suzuki, “Theoretical understanding of an absorption-based surface-plasmon resonance sensor based on Kretschmann’s theory,” Anal. Chem. 74, 696–671 (2002).
    [CrossRef] [PubMed]
  22. E. M. Yeatman, “Resolution and sensitivity in surface-plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
    [CrossRef]
  23. A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
    [CrossRef]
  24. L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65–2.5-mm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
    [CrossRef] [PubMed]
  25. R. A. Innes, J. R. Sambles, “Optical characterization of gold using surface-plasmon polaritons,” J. Phys. F 17, 277–287 (1987).
    [CrossRef]
  26. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
    [CrossRef]

2002 (1)

K. Kurihara, K. Suzuki, “Theoretical understanding of an absorption-based surface-plasmon resonance sensor based on Kretschmann’s theory,” Anal. Chem. 74, 696–671 (2002).
[CrossRef] [PubMed]

2000 (1)

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

1999 (3)

A. G. Frutos, S. C. Weibel, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy,” Anal. Chem. 71, 3935–3940 (1999).
[CrossRef]

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface-plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

1998 (3)

A. V. Kabashin, P. I. Nikitin, “Surface-plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

1997 (1)

P. Schuck, “Use of surface-plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
[CrossRef]

1996 (3)

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).
[CrossRef] [PubMed]

E. M. Yeatman, “Resolution and sensitivity in surface-plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[CrossRef]

1995 (2)

S. Lofas, “Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface-plasmon resonance,” Pure Appl. Chem. 67, 829–834 (1995).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface-plasmon resonance–how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
[CrossRef]

1993 (3)

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
[CrossRef]

L. Kou, D. Labrie, P. Chylek, “Refractive indices of water and ice in the 0.65–2.5-mm spectral range,” Appl. Opt. 32, 3531–3540 (1993).
[CrossRef] [PubMed]

1992 (1)

1988 (1)

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface-plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
[CrossRef]

1987 (1)

R. A. Innes, J. R. Sambles, “Optical characterization of gold using surface-plasmon polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

1983 (1)

B. Liedberg, C. Nylander, I. Lundstrum, “Surface-plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
[CrossRef]

1975 (1)

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface-plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

1972 (1)

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

1968 (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Abeles, F.

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface-plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Bartholomew, D. U.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Brockman, J. M.

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Burgess, L. W.

R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
[CrossRef]

Carr, R.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Chylek, P.

Corn, R. M.

A. G. Frutos, S. C. Weibel, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy,” Anal. Chem. 71, 3935–3940 (1999).
[CrossRef]

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

de Bruijn, H.

Elkind, J.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Frutos, A. G.

A. G. Frutos, S. C. Weibel, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy,” Anal. Chem. 71, 3935–3940 (1999).
[CrossRef]

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Furlong, C. E.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Garland, P. B.

P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).
[CrossRef] [PubMed]

Greve, J.

Grigorenko, A. N.

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface-plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Innes, R. A.

R. A. Innes, J. R. Sambles, “Optical characterization of gold using surface-plasmon polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Jorgenson, R. C.

R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Jung, C.

R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
[CrossRef]

Kabashin, A. V.

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface-plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

A. V. Kabashin, P. I. Nikitin, “Surface-plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

Kooyman, R.

Kou, L.

Kretschmann, E.

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Kukanskis, K. A.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Kurihara, K.

K. Kurihara, K. Suzuki, “Theoretical understanding of an absorption-based surface-plasmon resonance sensor based on Kretschmann’s theory,” Anal. Chem. 74, 696–671 (2002).
[CrossRef] [PubMed]

Labrie, D.

Levelt-Sengers, J. M. H.

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface-plasmon resonance–how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrum, “Surface-plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
[CrossRef]

Lofas, S.

S. Lofas, “Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface-plasmon resonance,” Pure Appl. Chem. 67, 829–834 (1995).
[CrossRef]

Lopez-Rios, T.

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface-plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Lundstrom, I.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface-plasmon resonance–how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
[CrossRef]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Lundstrum, I.

B. Liedberg, C. Nylander, I. Lundstrum, “Surface-plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Melendez, J. L.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Nelson, B. P.

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

Nikitin, P. I.

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface-plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

A. V. Kabashin, P. I. Nikitin, “Surface-plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

Nylander, C.

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface-plasmon resonance–how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrum, “Surface-plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
[CrossRef]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Raether, H.

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

H. Raether, “Advances in Research and Development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), pp. 145–261.

Sambles, J. R.

R. A. Innes, J. R. Sambles, “Optical characterization of gold using surface-plasmon polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Schuck, P.

P. Schuck, “Use of surface-plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
[CrossRef]

Suzuki, K.

K. Kurihara, K. Suzuki, “Theoretical understanding of an absorption-based surface-plasmon resonance sensor based on Kretschmann’s theory,” Anal. Chem. 74, 696–671 (2002).
[CrossRef] [PubMed]

Tadjeddine, A.

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface-plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Uttamchandani, D.

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface-plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
[CrossRef]

Weibel, S. C.

A. G. Frutos, S. C. Weibel, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy,” Anal. Chem. 71, 3935–3940 (1999).
[CrossRef]

Woodbury, R. G.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface-plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[CrossRef]

Yee, S. S.

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
[CrossRef]

Zhang, L. M.

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface-plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
[CrossRef]

Anal. Chem. (3)

A. G. Frutos, S. C. Weibel, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 2. Fourier transform SPR spectroscopy,” Anal. Chem. 71, 3935–3940 (1999).
[CrossRef]

B. P. Nelson, A. G. Frutos, J. M. Brockman, R. M. Corn, “Near-infrared surface-plasmon resonance measurements of ultrathin films. 1. Angle shift and SPR imaging experiments,” Anal. Chem. 71, 3928–3934 (1999).
[CrossRef]

K. Kurihara, K. Suzuki, “Theoretical understanding of an absorption-based surface-plasmon resonance sensor based on Kretschmann’s theory,” Anal. Chem. 74, 696–671 (2002).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

P. Schuck, “Use of surface-plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

A. N. Grigorenko, P. I. Nikitin, A. V. Kabashin, “Phase jumps and interferometric surface-plasmon resonance imaging,” Appl. Phys. Lett. 75, 3917–3919 (1999).
[CrossRef]

Biosens. Bioelectron. (2)

B. Liedberg, C. Nylander, I. Lundstrom, “Biosensing with surface-plasmon resonance–how it all started,” Biosens. Bioelectron. 10, i–ix (1995).
[CrossRef]

E. M. Yeatman, “Resolution and sensitivity in surface-plasmon microscopy and sensing,” Biosens. Bioelectron. 11, 635–649 (1996).
[CrossRef]

Electron. Lett. (1)

L. M. Zhang, D. Uttamchandani, “Optical chemical sensing employing surface-plasmon resonance,” Electron. Lett. 23, 1469–1470 (1988).
[CrossRef]

J. Appl. Phys. (1)

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys. 83, 3323–3336 (1998).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, J. M. H. Levelt-Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27, 761–774 (1998).
[CrossRef]

J. Phys. F (1)

R. A. Innes, J. R. Sambles, “Optical characterization of gold using surface-plasmon polaritons,” J. Phys. F 17, 277–287 (1987).
[CrossRef]

Opt. Commun. (2)

A. V. Kabashin, P. I. Nikitin, “Surface-plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. 150, 5–8 (1998).
[CrossRef]

E. Kretschmann, “Decay of nonradiative surface plasmons into light on rough silver films. Comparison of experimental and theoretical results,” Opt. Commun. 6, 185–187 (1972).
[CrossRef]

Pure Appl. Chem. (1)

S. Lofas, “Dextran modified self-assembled monolayer surfaces for use in biointeraction analysis with surface-plasmon resonance,” Pure Appl. Chem. 67, 829–834 (1995).
[CrossRef]

Q. Rev. Biophys. (1)

P. B. Garland, “Optical evanescent wave methods for the study of biomolecular interactions,” Q. Rev. Biophys. 29, 91–117 (1996).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. Johansen, H. Arwin, I. Lundström, B. Liedberg, “Imaging surface-plasmon resonance sensor based on multiple wavelengths: sensitivity considerations,” Rev. Sci. Instrum. 71, 3530–3538 (2000).
[CrossRef]

Sens. Actuators B (4)

J. L. Melendez, R. Carr, D. U. Bartholomew, K. A. Kukanskis, J. Elkind, S. S. Yee, C. E. Furlong, R. G. Woodbury, “A commercial solution for surface-plasmon sensing,” Sens. Actuators B 35, 212–216 (1996).
[CrossRef]

R. C. Jorgenson, C. Jung, S. S. Yee, L. W. Burgess, “Multi-wavelength surface-plasmon resonance as an optical sensor for characterizing the complex refractive indices of chemical samples,” Sens. Actuators B 14, 721–722 (1993).
[CrossRef]

B. Liedberg, C. Nylander, I. Lundstrum, “Surface-plasmon resonance for gas detection and biosensing,” Sens. Actuators B 4, 299–304 (1983).
[CrossRef]

R. C. Jorgenson, S. S. Yee, “Fiber-optic chemical sensor based on surface plasmon resonance,” Sens. Actuators B 12, 213–220 (1993).
[CrossRef]

Solid State Commun. (1)

F. Abeles, T. Lopez-Rios, A. Tadjeddine, “Investigation of the metal-electrolyte interface using surface-plasma waves with ellipsometric detection,” Solid State Commun. 16, 843–847 (1975).
[CrossRef]

Z. Naturforsch. A (1)

E. Kretschmann, H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch. A 23, 2135–2136 (1968).

Other (2)

H. Raether, “Advances in Research and Development,” in Physics of Thin Films, G. Hass, M. H. Francombe, R. W. Hoffmann, eds. (Academic, New York, 1997), pp. 145–261.

V. M. Agranovich, D. L. Mills, eds., Surface Polaritons Electromagnetic Waves at Surfaces and Interfaces (North-Holland, Amsterdam, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the three-layer system (prism–gold film–sensing medium) used in the calculations and experiment. (b) Dispersion curves ω(kx) of surface plasmons over a metal–dielectric (tested medium) interface and that of the photons in coupling (prism) materials.

Fig. 2
Fig. 2

Typical angular reflectivity curves for prisms from BK7 and SF11 glasses and silicon in the configuration of (a) gaseous and (b) aqueous sensing medium. The dashed and solid curves correspond to the calculated and experimental data, respectively.

Fig. 3
Fig. 3

SPR dispersion curves for different prism materials (BK7 and SF11 glasses and silicon) in the configuration of (a) gaseous and (b) aqueous sensing medium. The contours show conditions of minimal reflectivity as a function of wavelength λ and angle of incidence θ. The symbols represent the experimental data, while the curves depict the results of calculations. (c) Descriptive behavior of dispersion curves ω (kx) of surface plasmons and photons in BK7 glass (BK7) and silicon (Si) prisms near the coupling points (1–4).

Fig. 4
Fig. 4

Angular interrogation: angular sensing response of the system to the increase in film thickness of a dielectric layer with the refractive index nfilm=1.1 in the case of the sensing (a) in air and nfilm=1.42 in the case of the sensing (b) in water. The dependencies were obtained for the fixed pumping wavelength λ=1200 nm. Spectral interrogation: spectral sensing response of the system to the increase in film thickness for (c) the gaseous and (d) aqueous sensing medium. The dependencies were obtained for the fixed angles of incidence.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

kSP0=ωcm(ω)s(ω)m(ω)+s(ω)1/2,
npωcsin θSPR=kSP.
kSP=kSP0+kr,
kr=- ωc [rpm(kx=kSP0)]2m-s×msm-s3/2expi 4πdλm(m+s)1/2,
R=1-4ΓiΓr(kx-kSP)2+(Γi+Γr)2;
WK=2(Γi+Γr)npωccos θSPR.
dopt=λ4π1|m|1+s2|m|ln4|m|sin φm,
tanϕ2p(|m|(p-s)-ps) .

Metrics