Abstract

We propose a new method for viewing through turbid or obstructing media. The medium is illuminated with a modulated cw laser and the amplitude and phase of the transmitted (or reflected) signal is measured. This process takes place for a set of wavelengths in a certain wide band. In this way we acquire the Fourier transform of the temporal output. With this information we can reconstruct the temporal shape of the transmitted signal by computing the inverse transform. The proposed method benefits from the advantages of the first-light technique: high resolution, simple algorithms, insensitivity to boundary condition, etc., without suffering from its main deficiencies: complex and expensive equipment.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tuchin, Tissue Optics (SPIE Press, Bellingham, Wash., 2000)
  2. B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
    [CrossRef]
  3. E. N. Leith, B. G. Hoover, S. M. Grannell, K. D. Mills, H. S. Chen, D. S. Dilworth, “Realization of time gating by use of spatial filtering,” Appl. Opt. 38, 1370–1376 (1999).
    [CrossRef]
  4. A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, M. P. Shih, “Ultrafast cross-correlated harmonic imaging through scattering media,” Appl. Opt. 40, 45–51 (2001).
    [CrossRef]
  5. J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
    [CrossRef] [PubMed]
  6. Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
    [CrossRef] [PubMed]
  7. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
    [CrossRef] [PubMed]
  8. B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
    [CrossRef] [PubMed]
  9. K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992).
    [CrossRef] [PubMed]
  10. A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, March, 34–40 (1995).
  11. H. Jiang, K. D. Paulsen, U. L. Osterberg, B. W. Pogue, M. S. Patterson, “Optical image reconstruction using frequency-domain data: simulations and experiments,” J. Opt. Soc. Am. A 13, 253–266 (1996).
    [CrossRef]
  12. T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822–824 (2001).
    [CrossRef]
  13. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
    [CrossRef]
  14. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  15. D. M. Chambers, “Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations,” Opt. Express 1, 60–67 (1997).
    [CrossRef] [PubMed]
  16. F. Hanson, M. Lasher, “Coherent laser radar at 3.6 μm,” Appl. Opt. 41, 7689–7693 (2002).
    [CrossRef]
  17. L. T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, K.-I. Hayashi, “Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry,” Opt. Lett. 18, 1095–1097 (1993).
    [CrossRef] [PubMed]
  18. R. Onodera, Y. Ishii, “Selective imaging with a frequency-modulated laser-diode interferometer,” Opt. Lett. 20, 761–763 (1995).
    [CrossRef] [PubMed]
  19. E. Arons, D. Dilworth, M. Shih, P. C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
    [CrossRef] [PubMed]
  20. B. Chance et al., “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
    [CrossRef]

2002 (1)

2001 (2)

2000 (1)

1999 (2)

1998 (1)

B. Chance et al., “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

1997 (2)

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

D. M. Chambers, “Modeling heterodyne efficiency for coherent laser radar in the presence of aberrations,” Opt. Express 1, 60–67 (1997).
[CrossRef] [PubMed]

1996 (2)

1995 (3)

1993 (3)

1992 (2)

Alfano, R. R.

Arons, E.

Boppart, S. A.

Chambers, D. M.

Chance, B.

B. Chance et al., “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, March, 34–40 (1995).

Chen, H. S.

Das, B. B.

Demos, S. G.

Dilworth, D.

Dilworth, D. S.

Drexler, W.

Fujimoto, J. G.

Grannell, S. M.

Hanson, F.

Hayashi, K.-I.

Hebden, J. C.

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Hehlen, M. P.

Ho, P. P.

Hoover, B. G.

Iiyama, K.

Ippen, E. P.

Ishii, Y.

Jiang, H.

Jiang, S.

Kärtner, F. X.

Kuditcher, A.

Lasher, M.

Leith, E. N.

Li, X. D.

Liang, X.

Liu, F.

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

McBride, T. O.

Mills, K. D.

Morgner, U.

Onodera, R.

Osterberg, U. L.

Patterson, M. S.

Paulsen, K. D.

Pitris, C.

Pogue, B. W.

Poplack, S. P.

Rand, S. C.

Shih, M.

Shih, M. P.

Sun, P. C.

Tsukada, F.

Tuchin, V.

V. Tuchin, Tissue Optics (SPIE Press, Bellingham, Wash., 2000)

Wang, L.

Wang, L. T.

Wang, Q. Z.

Yodh, A.

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, March, 34–40 (1995).

Yoo, K. M.

Yoshida, N.

Appl. Opt. (3)

J. Opt. Soc. Am. A (1)

Med. Phys. (1)

J. C. Hebden, “Evaluating the spatial resolution performance of a time-resolved optical imaging system,” Med. Phys. 19, 1081–1087 (1992).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (10)

Q. Z. Wang, X. Liang, L. Wang, P. P. Ho, R. R. Alfano, “Fourier spatial filter acts as a temporal gate for light propagating through a turbid medium,” Opt. Lett. 20, 1498–1500 (1995).
[CrossRef] [PubMed]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

B. B. Das, K. M. Yoo, R. R. Alfano, “Ultrafast time-gated imaging in thick tissues: a step toward optical mammography,” Opt. Lett. 18, 1092–1094 (1993).
[CrossRef] [PubMed]

K. M. Yoo, B. B. Das, R. R. Alfano, “Imaging of a translucent object hidden in a highly scattering medium from the early portion of the diffuse component of a transmitted ultrafast laser pulse,” Opt. Lett. 17, 958–960 (1992).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, S. Jiang, U. L. Osterberg, K. D. Paulsen, S. P. Poplack, “Initial studies of in vivo absorbing and scattering heterogeneity in near-infrared tomographic breast imaging,” Opt. Lett. 26, 822–824 (2001).
[CrossRef]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25, 111–113 (2000).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

L. T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, K.-I. Hayashi, “Loss measurement in optical waveguide devices by coherent frequency-modulated continuous-wave reflectometry,” Opt. Lett. 18, 1095–1097 (1993).
[CrossRef] [PubMed]

R. Onodera, Y. Ishii, “Selective imaging with a frequency-modulated laser-diode interferometer,” Opt. Lett. 20, 761–763 (1995).
[CrossRef] [PubMed]

E. Arons, D. Dilworth, M. Shih, P. C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).
[CrossRef] [PubMed]

Phys. Today (1)

A. Yodh, B. Chance, “Spectroscopy and imaging with diffusing light,” Phys. Today, March, 34–40 (1995).

Rep. Prog. Phys. (1)

B. B. Das, F. Liu, R. R. Alfano, “Time-resolved fluorescence and photon migration studies in biomedical and model random media,” Rep. Prog. Phys. 60, 227–292 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

B. Chance et al., “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69, 3457–3481 (1998).
[CrossRef]

Other (1)

V. Tuchin, Tissue Optics (SPIE Press, Bellingham, Wash., 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of spectral ballistic imaging (SPEBI) in transmission configuration.

Fig. 2
Fig. 2

Block diagram of SPEBI in reflection configuration (to view an obscured object).

Fig. 3
Fig. 3

Experimental schematic.

Fig. 4
Fig. 4

Frequency-domain diagram.

Fig. 5
Fig. 5

Simulation of the output dynamics of a one-dimensional scattering medium.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ein(t, ωj)exp(iωjt)(1+acosΩt)=exp(iωjt){1+(a/2)[exp(iΩt)+exp(-iΩt)]},
Iin(t)1+2acosΩt,
Eout(t, ωj)=A(ωj)(1/2) exp(iωjt)(exp(iϕj0)+a/2×{exp[i(Ωt+ϕj(+))]+exp[-i(Ωt-ϕj(-))]}).
Iout(ωj)A2(ωj){1+2ac cos[Ωt+Δϕ(ωj)/2]},
Δϕ(ωj)(ϕj(-)-ϕj(+))/2
ccos[ϕj0-(ϕj(+)+ϕj(-))/2]1.
δω=2Ω,
H(ωj)=A(ωj)exp(iϕωj),
ϕ(ωj)=2m=0MΔϕ(ωm)-Δϕ(ω1)-Δϕ(ωM)δωΩ.
δω2πTD2πTB
TDL2/D3μsnL2/c

Metrics