Abstract

Can the oculomotor system use shape cues to guide search saccades? Observers searched for target letters (D, U, or X) among distractors (the letter O in the discrimination task and blank locations in the detection task) in Gaussian white noise. We measured the accuracy of first saccadic responses on each trial and perceptual (i.e., button-press) responses in separate trials with the stimulus duration chosen so that the saccadic and perceptual processing times were matched. We calculated the relative efficiency of saccadic decisions compared with perceptual decisions, ηrel=(dsac/dper)2. Relative efficiency was low but consistently greater than zero in discrimination tasks (15%±6%) and high in detection tasks (60%±10%). We conclude that the saccadic targeting system can use shape cues, but less efficiently than the perceptual system can.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Findlay, “Saccade target selection during visual search,” Vision Res. 37, 617–631 (1997).
    [CrossRef] [PubMed]
  2. I. T. Hooge, C. J. Erkelens, “Peripheral vision and oculomotor control during visual search,” Vision Res. 39, 1567–1575 (1999).
    [CrossRef] [PubMed]
  3. P. Viviani, R. G. Swensson, “Saccadic eye movements to peripherally discriminated visual targets,” J. Exp. Psychol. Hum. Percept. Perform. 8, 113–126 (1982).
    [CrossRef] [PubMed]
  4. P. Y. He, E. Kowler, “The role of location probability in the programming of saccades: implications for ‘center-of-gravity’ tendencies,” Vision Res. 29, 1165–1181 (1989).
    [CrossRef]
  5. L. G. Williams, “The effects of target specification on objects fixated during visual search,” Acta Psychol. 27, 355–360 (1967).
    [CrossRef]
  6. G. J. Zelinsky, “Using eye saccades to assess the selectivity of search movements,” Vision Res. 36, 2177–2187 (1996).
    [CrossRef] [PubMed]
  7. M. P. Eckstein, B. R. Beutter, L. S. Stone, “Quantifying the performance limits of human saccadic targeting during visual search,” Perception 30, 1389–1401 (2001).
    [CrossRef]
  8. B. R. Beutter, M. P. Eckstein, L. S. Stone, “Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination,” J. Opt. Soc. Am. A 20, 1341–1355 (2003).
    [CrossRef]
  9. D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).
  10. W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
    [CrossRef] [PubMed]
  11. H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
    [CrossRef] [PubMed]
  12. P. Whittle, “Increments and decrements: luminance discrimination,” Vision Res. 26, 1677–1691 (1986).
    [CrossRef] [PubMed]
  13. D. J. Tolhurst, Y. Tadmor, “Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra,” Vision Res. 37, 3203–3215 (1997).
    [CrossRef]
  14. B. R. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
    [CrossRef] [PubMed]
  15. W. Becker, R. Jurgens, “An analysis of the saccadic system by means of double step stimuli,” Vision Res. 19, 967–983 (1979).
    [CrossRef] [PubMed]
  16. Oculomotor error in directing saccades almost certainly had little effect on saccadic accuracy, because there was a 360 deg÷10=36 degrange corresponding to each stimulus location. Using identical methods, Beutter et al.8recorded saccadic responses approaching 100% correct.
  17. W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory 4, 171–212 (1954).
    [CrossRef]
  18. In an M-alternative localization task, the ideal observer’s strategy is to cross-correlate the stimulus at each of the Mpossible target locations with a template that is the difference image between the target and the distractor and to choose the location with the largest cross correlation. See Ref. 8for details.
  19. See Ref. 9, Appendix 1, for a description of how to calculate d′in an M-alternative forced-choice task.
  20. J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
    [CrossRef]
  21. J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science, Mill Valley, Calif., 1982).
  22. M. P. Eckstein, A. J. Ahumada, A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406–2419 (1997).
    [CrossRef]
  23. B. Efron, R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).
  24. For all observers, the uncertainty parameters of the pooled oculometric and psychometric functions were significantly greater than zero (p<0.01).Beutter et al.8found that in disk contrast discrimination tasks, uncertainty was near zero for both saccadic and perceptual responses. This difference is probably due to the fact that Beutter et al.’s discrimination task had a contrast pedestal, whereas ours did not. That is, at low SNRs in our task, target and distractor letters were shown at contrasts that were near their detec-tion threshold. Low-contrast viewing conditions tend to increase uncertainty (see Ref. 22).
  25. D. G. Pelli, C. W. Burns, B. Farrell, D. C. Moore, “Identifying letters,” Vision Res. (in press).
  26. A. B. Watson, “Visual detection of spatial contrast patterns: evaluation of five simple models,” Opt. Express 6, 12–33 (2000).
    [CrossRef]
  27. M. P. Eckstein, S. S. Shimozaki, “Classification images for saccadic targeting and perceptual decisions during search,” Perception 32 (supplement), 10 (2002).
  28. R. H. Wurtz, J. E. Albano, “Visual-motor function of the primate superior colliculus,” Annu. Rev. Neurosci. 3, 189–226 (1980).
    [CrossRef] [PubMed]
  29. A. F. Fuchs, C. R. Kaneko, C. A. Scudder, “Brainstem control of saccadic eye movements,” Annu. Rev. Neurosci. 8, 307–337 (1985).
    [CrossRef] [PubMed]
  30. D. L. Sparks, “The brainstem control of saccadic eye movements,” Nature Rev. Neurosci. 3, 952–964 (2002).
    [CrossRef]
  31. P. H. Schiller, E. J. Tehovnik, “Look and see: how the brain moves your eyes about,” Prog. Brain Res. 134, 127–142 (2001).
    [CrossRef] [PubMed]
  32. J. D. Schall, “The neural selection and control of saccades by the frontal eye field,” Philos. Trans. R. Soc. London Ser. B 357, 1073–1082 (2002).
    [CrossRef]
  33. W. Fries, “Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase,” J. Comp. Neurol. 230, 55–76 (1984).
    [CrossRef] [PubMed]
  34. R. J. Krauzlis, L. S. Stone, “Tracking with the mind’s eye,” Trends Neurosci. 22, 544–550 (1999).
    [CrossRef] [PubMed]
  35. M. A. Goodale, A. D. Milner, “Separate visual pathways for perception and action,” Trends Neurosci. 15, 20–25 (1992).
    [CrossRef] [PubMed]
  36. J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
    [CrossRef]
  37. R. Desimone, J. Fleming, C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res. 184, 41–55 (1980).
    [CrossRef] [PubMed]
  38. T. Moore, “Shape representations and visual guidance of saccadic eye movements,” Science 285, 1914–1917 (1999).
    [CrossRef] [PubMed]
  39. U. Rajashekar, L. K. Cormak, A. C. Bovik, “Visual search: structure from noise,” presented at the Symposium on Eye Tracking Research & Application 2002, New Orleans, La., March 25–27, 2002.
  40. M. P. Eckstein, A. J. Ahumada, “Classification images: a tool to analyze visual strategies,” J. Vision 2, 1x (2002).
    [CrossRef]
  41. A. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Perception 26 (supplement), 18 (1996).
  42. J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
    [CrossRef] [PubMed]
  43. A. B. Watson, R. Rosenholtz, “A Rorschach test for visual classification strategies,” Invest. Ophthalmol. Visual Sci. 38, S1 (1997).

2003

2002

M. P. Eckstein, A. J. Ahumada, “Classification images: a tool to analyze visual strategies,” J. Vision 2, 1x (2002).
[CrossRef]

D. L. Sparks, “The brainstem control of saccadic eye movements,” Nature Rev. Neurosci. 3, 952–964 (2002).
[CrossRef]

J. D. Schall, “The neural selection and control of saccades by the frontal eye field,” Philos. Trans. R. Soc. London Ser. B 357, 1073–1082 (2002).
[CrossRef]

M. P. Eckstein, S. S. Shimozaki, “Classification images for saccadic targeting and perceptual decisions during search,” Perception 32 (supplement), 10 (2002).

2001

M. P. Eckstein, B. R. Beutter, L. S. Stone, “Quantifying the performance limits of human saccadic targeting during visual search,” Perception 30, 1389–1401 (2001).
[CrossRef]

P. H. Schiller, E. J. Tehovnik, “Look and see: how the brain moves your eyes about,” Prog. Brain Res. 134, 127–142 (2001).
[CrossRef] [PubMed]

2000

A. B. Watson, “Visual detection of spatial contrast patterns: evaluation of five simple models,” Opt. Express 6, 12–33 (2000).
[CrossRef]

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[CrossRef] [PubMed]

1999

T. Moore, “Shape representations and visual guidance of saccadic eye movements,” Science 285, 1914–1917 (1999).
[CrossRef] [PubMed]

R. J. Krauzlis, L. S. Stone, “Tracking with the mind’s eye,” Trends Neurosci. 22, 544–550 (1999).
[CrossRef] [PubMed]

I. T. Hooge, C. J. Erkelens, “Peripheral vision and oculomotor control during visual search,” Vision Res. 39, 1567–1575 (1999).
[CrossRef] [PubMed]

1998

B. R. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
[CrossRef]

1997

A. B. Watson, R. Rosenholtz, “A Rorschach test for visual classification strategies,” Invest. Ophthalmol. Visual Sci. 38, S1 (1997).

M. P. Eckstein, A. J. Ahumada, A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406–2419 (1997).
[CrossRef]

D. J. Tolhurst, Y. Tadmor, “Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra,” Vision Res. 37, 3203–3215 (1997).
[CrossRef]

J. M. Findlay, “Saccade target selection during visual search,” Vision Res. 37, 617–631 (1997).
[CrossRef] [PubMed]

1996

G. J. Zelinsky, “Using eye saccades to assess the selectivity of search movements,” Vision Res. 36, 2177–2187 (1996).
[CrossRef] [PubMed]

A. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Perception 26 (supplement), 18 (1996).

1994

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

1993

H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
[CrossRef] [PubMed]

1992

M. A. Goodale, A. D. Milner, “Separate visual pathways for perception and action,” Trends Neurosci. 15, 20–25 (1992).
[CrossRef] [PubMed]

1989

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

P. Y. He, E. Kowler, “The role of location probability in the programming of saccades: implications for ‘center-of-gravity’ tendencies,” Vision Res. 29, 1165–1181 (1989).
[CrossRef]

1986

P. Whittle, “Increments and decrements: luminance discrimination,” Vision Res. 26, 1677–1691 (1986).
[CrossRef] [PubMed]

1985

A. F. Fuchs, C. R. Kaneko, C. A. Scudder, “Brainstem control of saccadic eye movements,” Annu. Rev. Neurosci. 8, 307–337 (1985).
[CrossRef] [PubMed]

1984

W. Fries, “Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase,” J. Comp. Neurol. 230, 55–76 (1984).
[CrossRef] [PubMed]

1982

P. Viviani, R. G. Swensson, “Saccadic eye movements to peripherally discriminated visual targets,” J. Exp. Psychol. Hum. Percept. Perform. 8, 113–126 (1982).
[CrossRef] [PubMed]

1980

R. H. Wurtz, J. E. Albano, “Visual-motor function of the primate superior colliculus,” Annu. Rev. Neurosci. 3, 189–226 (1980).
[CrossRef] [PubMed]

R. Desimone, J. Fleming, C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res. 184, 41–55 (1980).
[CrossRef] [PubMed]

1979

W. Becker, R. Jurgens, “An analysis of the saccadic system by means of double step stimuli,” Vision Res. 19, 967–983 (1979).
[CrossRef] [PubMed]

1967

L. G. Williams, “The effects of target specification on objects fixated during visual search,” Acta Psychol. 27, 355–360 (1967).
[CrossRef]

1954

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory 4, 171–212 (1954).
[CrossRef]

Ahumada, A.

A. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Perception 26 (supplement), 18 (1996).

Ahumada, A. J.

Albano, J. E.

R. H. Wurtz, J. E. Albano, “Visual-motor function of the primate superior colliculus,” Annu. Rev. Neurosci. 3, 189–226 (1980).
[CrossRef] [PubMed]

Becker, W.

W. Becker, R. Jurgens, “An analysis of the saccadic system by means of double step stimuli,” Vision Res. 19, 967–983 (1979).
[CrossRef] [PubMed]

Bennett, P. J.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[CrossRef] [PubMed]

Beutter, B. R.

B. R. Beutter, M. P. Eckstein, L. S. Stone, “Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination,” J. Opt. Soc. Am. A 20, 1341–1355 (2003).
[CrossRef]

M. P. Eckstein, B. R. Beutter, L. S. Stone, “Quantifying the performance limits of human saccadic targeting during visual search,” Perception 30, 1389–1401 (2001).
[CrossRef]

B. R. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

Birdsall, T. G.

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory 4, 171–212 (1954).
[CrossRef]

Bovik, A. C.

U. Rajashekar, L. K. Cormak, A. C. Bovik, “Visual search: structure from noise,” presented at the Symposium on Eye Tracking Research & Application 2002, New Orleans, La., March 25–27, 2002.

Burns, C. W.

D. G. Pelli, C. W. Burns, B. Farrell, D. C. Moore, “Identifying letters,” Vision Res. (in press).

Cormak, L. K.

U. Rajashekar, L. K. Cormak, A. C. Bovik, “Visual search: structure from noise,” presented at the Symposium on Eye Tracking Research & Application 2002, New Orleans, La., March 25–27, 2002.

Desimone, R.

R. Desimone, J. Fleming, C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res. 184, 41–55 (1980).
[CrossRef] [PubMed]

Eckstein, M. P.

B. R. Beutter, M. P. Eckstein, L. S. Stone, “Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination,” J. Opt. Soc. Am. A 20, 1341–1355 (2003).
[CrossRef]

M. P. Eckstein, A. J. Ahumada, “Classification images: a tool to analyze visual strategies,” J. Vision 2, 1x (2002).
[CrossRef]

M. P. Eckstein, S. S. Shimozaki, “Classification images for saccadic targeting and perceptual decisions during search,” Perception 32 (supplement), 10 (2002).

M. P. Eckstein, B. R. Beutter, L. S. Stone, “Quantifying the performance limits of human saccadic targeting during visual search,” Perception 30, 1389–1401 (2001).
[CrossRef]

M. P. Eckstein, A. J. Ahumada, A. B. Watson, “Visual signal detection in structured backgrounds. II. Effects of contrast gain control, background variations, and white noise,” J. Opt. Soc. Am. A 14, 2406–2419 (1997).
[CrossRef]

Efron, B.

B. Efron, R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

Erkelens, C. J.

I. T. Hooge, C. J. Erkelens, “Peripheral vision and oculomotor control during visual search,” Vision Res. 39, 1567–1575 (1999).
[CrossRef] [PubMed]

Farrell, B.

D. G. Pelli, C. W. Burns, B. Farrell, D. C. Moore, “Identifying letters,” Vision Res. (in press).

Findlay, J. M.

J. M. Findlay, “Saccade target selection during visual search,” Vision Res. 37, 617–631 (1997).
[CrossRef] [PubMed]

Fleming, J.

R. Desimone, J. Fleming, C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res. 184, 41–55 (1980).
[CrossRef] [PubMed]

Fox, W. C.

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory 4, 171–212 (1954).
[CrossRef]

Fries, W.

W. Fries, “Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase,” J. Comp. Neurol. 230, 55–76 (1984).
[CrossRef] [PubMed]

Fuchs, A. F.

A. F. Fuchs, C. R. Kaneko, C. A. Scudder, “Brainstem control of saccadic eye movements,” Annu. Rev. Neurosci. 8, 307–337 (1985).
[CrossRef] [PubMed]

Geisler, W. S.

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

Gold, J. M.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[CrossRef] [PubMed]

Goodale, M. A.

M. A. Goodale, A. D. Milner, “Separate visual pathways for perception and action,” Trends Neurosci. 15, 20–25 (1992).
[CrossRef] [PubMed]

Green, D. M.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).

Gross, C. G.

R. Desimone, J. Fleming, C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res. 184, 41–55 (1980).
[CrossRef] [PubMed]

Hahn, S.

J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
[CrossRef]

He, P. Y.

P. Y. He, E. Kowler, “The role of location probability in the programming of saccades: implications for ‘center-of-gravity’ tendencies,” Vision Res. 29, 1165–1181 (1989).
[CrossRef]

Hooge, I. T.

I. T. Hooge, C. J. Erkelens, “Peripheral vision and oculomotor control during visual search,” Vision Res. 39, 1567–1575 (1999).
[CrossRef] [PubMed]

Irwin, D. E.

J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
[CrossRef]

Jurgens, R.

W. Becker, R. Jurgens, “An analysis of the saccadic system by means of double step stimuli,” Vision Res. 19, 967–983 (1979).
[CrossRef] [PubMed]

Kaneko, C. R.

A. F. Fuchs, C. R. Kaneko, C. A. Scudder, “Brainstem control of saccadic eye movements,” Annu. Rev. Neurosci. 8, 307–337 (1985).
[CrossRef] [PubMed]

Kowler, E.

P. Y. He, E. Kowler, “The role of location probability in the programming of saccades: implications for ‘center-of-gravity’ tendencies,” Vision Res. 29, 1165–1181 (1989).
[CrossRef]

Kramer, A. F.

J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
[CrossRef]

Krauzlis, R. J.

R. J. Krauzlis, L. S. Stone, “Tracking with the mind’s eye,” Trends Neurosci. 22, 544–550 (1999).
[CrossRef] [PubMed]

Kukkonen, H.

H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
[CrossRef] [PubMed]

Milner, A. D.

M. A. Goodale, A. D. Milner, “Separate visual pathways for perception and action,” Trends Neurosci. 15, 20–25 (1992).
[CrossRef] [PubMed]

Moore, D. C.

D. G. Pelli, C. W. Burns, B. Farrell, D. C. Moore, “Identifying letters,” Vision Res. (in press).

Moore, T.

T. Moore, “Shape representations and visual guidance of saccadic eye movements,” Science 285, 1914–1917 (1999).
[CrossRef] [PubMed]

Murray, R. F.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[CrossRef] [PubMed]

Nasanen, R.

H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
[CrossRef] [PubMed]

Pelli, D. G.

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

D. G. Pelli, C. W. Burns, B. Farrell, D. C. Moore, “Identifying letters,” Vision Res. (in press).

Peterson, W. W.

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory 4, 171–212 (1954).
[CrossRef]

Rajashekar, U.

U. Rajashekar, L. K. Cormak, A. C. Bovik, “Visual search: structure from noise,” presented at the Symposium on Eye Tracking Research & Application 2002, New Orleans, La., March 25–27, 2002.

Rosenholtz, R.

A. B. Watson, R. Rosenholtz, “A Rorschach test for visual classification strategies,” Invest. Ophthalmol. Visual Sci. 38, S1 (1997).

Rovamo, J.

H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
[CrossRef] [PubMed]

Schall, J. D.

J. D. Schall, “The neural selection and control of saccades by the frontal eye field,” Philos. Trans. R. Soc. London Ser. B 357, 1073–1082 (2002).
[CrossRef]

Schiller, P. H.

P. H. Schiller, E. J. Tehovnik, “Look and see: how the brain moves your eyes about,” Prog. Brain Res. 134, 127–142 (2001).
[CrossRef] [PubMed]

Scudder, C. A.

A. F. Fuchs, C. R. Kaneko, C. A. Scudder, “Brainstem control of saccadic eye movements,” Annu. Rev. Neurosci. 8, 307–337 (1985).
[CrossRef] [PubMed]

Sekuler, A. B.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[CrossRef] [PubMed]

Shimozaki, S. S.

M. P. Eckstein, S. S. Shimozaki, “Classification images for saccadic targeting and perceptual decisions during search,” Perception 32 (supplement), 10 (2002).

Solomon, J. A.

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

Sparks, D. L.

D. L. Sparks, “The brainstem control of saccadic eye movements,” Nature Rev. Neurosci. 3, 952–964 (2002).
[CrossRef]

Stone, L. S.

B. R. Beutter, M. P. Eckstein, L. S. Stone, “Saccadic and perceptual performance in visual search tasks. I. Contrast detection and discrimination,” J. Opt. Soc. Am. A 20, 1341–1355 (2003).
[CrossRef]

M. P. Eckstein, B. R. Beutter, L. S. Stone, “Quantifying the performance limits of human saccadic targeting during visual search,” Perception 30, 1389–1401 (2001).
[CrossRef]

R. J. Krauzlis, L. S. Stone, “Tracking with the mind’s eye,” Trends Neurosci. 22, 544–550 (1999).
[CrossRef] [PubMed]

B. R. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

Swensson, R. G.

P. Viviani, R. G. Swensson, “Saccadic eye movements to peripherally discriminated visual targets,” J. Exp. Psychol. Hum. Percept. Perform. 8, 113–126 (1982).
[CrossRef] [PubMed]

Swets, J. A.

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).

Tadmor, Y.

D. J. Tolhurst, Y. Tadmor, “Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra,” Vision Res. 37, 3203–3215 (1997).
[CrossRef]

Taylor, J. R.

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science, Mill Valley, Calif., 1982).

Tehovnik, E. J.

P. H. Schiller, E. J. Tehovnik, “Look and see: how the brain moves your eyes about,” Prog. Brain Res. 134, 127–142 (2001).
[CrossRef] [PubMed]

Theeuwes, J.

J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
[CrossRef]

Tibshirani, R.

B. Efron, R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

Tiippana, K.

H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
[CrossRef] [PubMed]

Tolhurst, D. J.

D. J. Tolhurst, Y. Tadmor, “Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra,” Vision Res. 37, 3203–3215 (1997).
[CrossRef]

Viviani, P.

P. Viviani, R. G. Swensson, “Saccadic eye movements to peripherally discriminated visual targets,” J. Exp. Psychol. Hum. Percept. Perform. 8, 113–126 (1982).
[CrossRef] [PubMed]

Watson, A. B.

Whittle, P.

P. Whittle, “Increments and decrements: luminance discrimination,” Vision Res. 26, 1677–1691 (1986).
[CrossRef] [PubMed]

Williams, L. G.

L. G. Williams, “The effects of target specification on objects fixated during visual search,” Acta Psychol. 27, 355–360 (1967).
[CrossRef]

Wurtz, R. H.

R. H. Wurtz, J. E. Albano, “Visual-motor function of the primate superior colliculus,” Annu. Rev. Neurosci. 3, 189–226 (1980).
[CrossRef] [PubMed]

Zelinsky, G. J.

G. J. Zelinsky, “Using eye saccades to assess the selectivity of search movements,” Vision Res. 36, 2177–2187 (1996).
[CrossRef] [PubMed]

Acta Psychol.

L. G. Williams, “The effects of target specification on objects fixated during visual search,” Acta Psychol. 27, 355–360 (1967).
[CrossRef]

Annu. Rev. Neurosci.

R. H. Wurtz, J. E. Albano, “Visual-motor function of the primate superior colliculus,” Annu. Rev. Neurosci. 3, 189–226 (1980).
[CrossRef] [PubMed]

A. F. Fuchs, C. R. Kaneko, C. A. Scudder, “Brainstem control of saccadic eye movements,” Annu. Rev. Neurosci. 8, 307–337 (1985).
[CrossRef] [PubMed]

Brain Res.

R. Desimone, J. Fleming, C. G. Gross, “Prestriate afferents to inferior temporal cortex: an HRP study,” Brain Res. 184, 41–55 (1980).
[CrossRef] [PubMed]

Curr. Biol.

J. M. Gold, R. F. Murray, P. J. Bennett, A. B. Sekuler, “Deriving behavioural receptive fields for visually completed contours,” Curr. Biol. 10, 663–666 (2000).
[CrossRef] [PubMed]

Invest. Ophthalmol. Visual Sci.

A. B. Watson, R. Rosenholtz, “A Rorschach test for visual classification strategies,” Invest. Ophthalmol. Visual Sci. 38, S1 (1997).

IRE Trans. Inf. Theory

W. W. Peterson, T. G. Birdsall, W. C. Fox, “The theory of signal detectability,” IRE Trans. Inf. Theory 4, 171–212 (1954).
[CrossRef]

J. Comp. Neurol.

W. Fries, “Cortical projections to the superior colliculus in the macaque monkey: a retrograde study using horseradish peroxidase,” J. Comp. Neurol. 230, 55–76 (1984).
[CrossRef] [PubMed]

J. Exp. Psychol. Hum. Percept. Perform.

P. Viviani, R. G. Swensson, “Saccadic eye movements to peripherally discriminated visual targets,” J. Exp. Psychol. Hum. Percept. Perform. 8, 113–126 (1982).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

J. Vision

M. P. Eckstein, A. J. Ahumada, “Classification images: a tool to analyze visual strategies,” J. Vision 2, 1x (2002).
[CrossRef]

Nature (London)

J. A. Solomon, D. G. Pelli, “The visual filter mediating letter identification,” Nature (London) 369, 395–397 (1994).
[CrossRef]

Nature Rev. Neurosci.

D. L. Sparks, “The brainstem control of saccadic eye movements,” Nature Rev. Neurosci. 3, 952–964 (2002).
[CrossRef]

Opt. Express

Perception

M. P. Eckstein, S. S. Shimozaki, “Classification images for saccadic targeting and perceptual decisions during search,” Perception 32 (supplement), 10 (2002).

A. Ahumada, “Perceptual classification images from Vernier acuity masked by noise,” Perception 26 (supplement), 18 (1996).

M. P. Eckstein, B. R. Beutter, L. S. Stone, “Quantifying the performance limits of human saccadic targeting during visual search,” Perception 30, 1389–1401 (2001).
[CrossRef]

Philos. Trans. R. Soc. London Ser. B

J. D. Schall, “The neural selection and control of saccades by the frontal eye field,” Philos. Trans. R. Soc. London Ser. B 357, 1073–1082 (2002).
[CrossRef]

Prog. Brain Res.

P. H. Schiller, E. J. Tehovnik, “Look and see: how the brain moves your eyes about,” Prog. Brain Res. 134, 127–142 (2001).
[CrossRef] [PubMed]

Psychol. Rev.

W. S. Geisler, “Sequential ideal-observer analysis of visual discriminations,” Psychol. Rev. 96, 267–314 (1989).
[CrossRef] [PubMed]

Psycholo. Sci.

J. Theeuwes, A. F. Kramer, S. Hahn, D. E. Irwin, “Our eyes do not always go where we want them to go: capture of the eyes by new objects,” Psycholo. Sci. 9, 379–385 (1998).
[CrossRef]

Science

T. Moore, “Shape representations and visual guidance of saccadic eye movements,” Science 285, 1914–1917 (1999).
[CrossRef] [PubMed]

Trends Neurosci.

R. J. Krauzlis, L. S. Stone, “Tracking with the mind’s eye,” Trends Neurosci. 22, 544–550 (1999).
[CrossRef] [PubMed]

M. A. Goodale, A. D. Milner, “Separate visual pathways for perception and action,” Trends Neurosci. 15, 20–25 (1992).
[CrossRef] [PubMed]

Vision Res.

H. Kukkonen, J. Rovamo, K. Tiippana, R. Nasanen, “Michelson contrast, RMS contrast and energy of various spatial stimuli at threshold,” Vision Res. 33, 1431–1436 (1993).
[CrossRef] [PubMed]

P. Whittle, “Increments and decrements: luminance discrimination,” Vision Res. 26, 1677–1691 (1986).
[CrossRef] [PubMed]

D. J. Tolhurst, Y. Tadmor, “Band-limited contrast in natural images explains the detectability of changes in the amplitude spectra,” Vision Res. 37, 3203–3215 (1997).
[CrossRef]

B. R. Beutter, L. S. Stone, “Human motion perception and smooth eye movements show similar directional biases for elongated apertures,” Vision Res. 38, 1273–1286 (1998).
[CrossRef] [PubMed]

W. Becker, R. Jurgens, “An analysis of the saccadic system by means of double step stimuli,” Vision Res. 19, 967–983 (1979).
[CrossRef] [PubMed]

G. J. Zelinsky, “Using eye saccades to assess the selectivity of search movements,” Vision Res. 36, 2177–2187 (1996).
[CrossRef] [PubMed]

P. Y. He, E. Kowler, “The role of location probability in the programming of saccades: implications for ‘center-of-gravity’ tendencies,” Vision Res. 29, 1165–1181 (1989).
[CrossRef]

J. M. Findlay, “Saccade target selection during visual search,” Vision Res. 37, 617–631 (1997).
[CrossRef] [PubMed]

I. T. Hooge, C. J. Erkelens, “Peripheral vision and oculomotor control during visual search,” Vision Res. 39, 1567–1575 (1999).
[CrossRef] [PubMed]

Other

D. M. Green, J. A. Swets, Signal Detection Theory and Psychophysics (Krieger, Huntington, N.Y., 1974).

Oculomotor error in directing saccades almost certainly had little effect on saccadic accuracy, because there was a 360 deg÷10=36 degrange corresponding to each stimulus location. Using identical methods, Beutter et al.8recorded saccadic responses approaching 100% correct.

J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements (University Science, Mill Valley, Calif., 1982).

In an M-alternative localization task, the ideal observer’s strategy is to cross-correlate the stimulus at each of the Mpossible target locations with a template that is the difference image between the target and the distractor and to choose the location with the largest cross correlation. See Ref. 8for details.

See Ref. 9, Appendix 1, for a description of how to calculate d′in an M-alternative forced-choice task.

U. Rajashekar, L. K. Cormak, A. C. Bovik, “Visual search: structure from noise,” presented at the Symposium on Eye Tracking Research & Application 2002, New Orleans, La., March 25–27, 2002.

B. Efron, R. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York, 1993).

For all observers, the uncertainty parameters of the pooled oculometric and psychometric functions were significantly greater than zero (p<0.01).Beutter et al.8found that in disk contrast discrimination tasks, uncertainty was near zero for both saccadic and perceptual responses. This difference is probably due to the fact that Beutter et al.’s discrimination task had a contrast pedestal, whereas ours did not. That is, at low SNRs in our task, target and distractor letters were shown at contrasts that were near their detec-tion threshold. Low-contrast viewing conditions tend to increase uncertainty (see Ref. 22).

D. G. Pelli, C. W. Burns, B. Farrell, D. C. Moore, “Identifying letters,” Vision Res. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Typical stimuli from (a) experiment 1, (b) experiment 2, and (c) experiment 3. In (c), the contrast of the target has been increased to 15% to make the figure clearer. Image (d) shows closeups of the target and distractor letters.

Fig. 2
Fig. 2

Oculometric and psychometric functions from experiment 1, plotted as proportion correct versus signal contrast. The error bars show standard errors and are often smaller than the data points. The curves show maximum-likelihood fits of two-parameter functions derived from Eckstein et al.’s7 efficiency-and-uncertainty model. Table 1 below reports the fitted parameters.

Fig. 3
Fig. 3

Oculometric and psychometric functions from experiment 1. These are the same data as those shown in Fig. 2, replotted as human observers’ d versus ideal observer’s d (which we call the SNR). The thin black curves show individual maximum-likelihood fits of two-parameter functions derived from Eckstein et al.’s7 efficiency-and-uncertainty model. The thick gray curves show simultaneous fits of the same type of function to performance in all three letter tasks. Table 1 below reports the fitted parameters.

Fig. 4
Fig. 4

Efficiency of first saccades on EM trials of experiment 1 relative to perceptual responses on FIX trials. Estimates of relative efficiency at low contrasts are ratios of two noisy, near-zero numbers and so are extremely noisy. The error bars show standard errors. Points with standard errors larger than 0.5 have been omitted from the plots.

Fig. 5
Fig. 5

Median saccadic latency in experiment 1. The error bars show standard errors and are smaller than the data points.

Fig. 6
Fig. 6

Saccadic performance, perceptual performance, and relative efficiency in experiment 2. The error bars show standard errors.

Fig. 7
Fig. 7

Saccadic performance, perceptual performance, and relative efficiency in experiment 3. The error bars show standard errors.

Tables (1)

Tables Icon

Table 1 Parameters of Psychometric Functions in Experiment 1 a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ηabs=(dsac/dideal)2.
ηrel=(dsac/dper)2.
Li=T(si)jiD(sj).

Metrics