Abstract

A detailed study of time-averaged electromagnetic forces on subwavelength-sized particles is presented. An analytical decomposition of the force into gradient and scattering-plus-absorption components is carried out, on the basis of which the attractive or repulsive behavior of the force is explained. Small metallic particles are shown to experience both kinds of forces; which kind also depends on the excitation of surface plasmons. Resonances give rise to enhancements of both the scattering and the absorption forces, but the gradient force can become negligible. Also, close to resonant wavelengths, the gradient force can be maximum, while both the scattering and the absorption forces remain large. Comparisons of analytic results with rigorous calculations allow the establishment of ranges of validity of the dipolar approximation for these forces.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription