Abstract

The phase-retrieval problem, fundamental in applied physics and engineering, addresses the question of how to determine the phase of a complex-valued function from modulus data and additional a priori information. Recently we identified two important methods for phase retrieval, namely, Fienup’s basic input–output and hybrid input–output (HIO) algorithms, with classical convex projection methods and suggested that further connections between convex optimization and phase retrieval should be explored. Following up on this work, we introduce a new projection-based method, termed the hybrid projection–reflection (HPR) algorithm, for solving phase-retrieval problems featuring nonnegativity constraints in the object domain. Motivated by properties of the HPR algorithm for convex constraints, we recommend an error measure studied by Fienup more than 20 years ago. This error measure, which has received little attention in the literature, lends itself to an easily implementable stopping criterion. In numerical experiments we found the HPR algorithm to be a competitive alternative to the HIO algorithm and the stopping criterion to be reliable and robust.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (38)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription