Abstract

Recently, a paraxially individual far-field model was presented for the focusing and imaging analysis of pinhole photon sieves. By use of a local Taylor expansion of the integrated function of the Rayleigh–Sommerfeld diffraction formula, the small-size property of the individual pinholes, and the linear superposition principle, we extend this model to the nonparaxial case of high-numerical-aperture photon sieves. Some related problems, such as the validity range of this nonparaxial model and the selection conditions for the individual pinholes, are also discussed in detail.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Focusing analysis of the pinhole photon sieve: individual far-field model

Qing Cao and Jürgen Jahns
J. Opt. Soc. Am. A 19(12) 2387-2393 (2002)

Comprehensive focusing analysis of various Fresnel zone plates

Qing Cao and Jürgen Jahns
J. Opt. Soc. Am. A 21(4) 561-571 (2004)

Modified Fresnel zone plates that produce sharp Gaussian focal spots

Qing Cao and Jürgen Jahns
J. Opt. Soc. Am. A 20(8) 1576-1581 (2003)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription