Abstract

Recent investigations into high-aspect-ratio short-pitch metal grating structures have shown that it is possible to excite surface plasmon polaritons (SPPs) even in the zero-order region of the spectrum. The predominant reason this is possible is that extremely large bandgaps occur in the SPP dispersion curves, which are caused by the large depths, and heights, of the structures. The form of the resultant dispersion curves has also been found to be highly dependent on the shape of the grating profile. We present an extension to a previously published paper that described the nature of the SPPs excited on narrow-ridged short-pitch metal gratings in the classical mount by considering the case in which the radiation is incident at nonzero azimuthal angles (the conical mount). In particular, we consider the case of 90° and 45° azimuthal angles and discuss the coupling to the SPP modes and the way in which polarization conversion is evident on such structures.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).
  2. T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
    [CrossRef]
  3. F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
    [CrossRef]
  4. J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  5. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
    [CrossRef]
  6. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
    [CrossRef]
  7. L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
    [CrossRef] [PubMed]
  8. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
    [CrossRef] [PubMed]
  9. M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
    [CrossRef]
  10. W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
    [CrossRef]
  11. I. R. Hooper, J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
    [CrossRef]
  12. I. R. Hooper, J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
    [CrossRef]
  13. I. R. Hooper, J. R. Sambles, “A broadband polarization converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152–2154 (2002).
    [CrossRef]
  14. N. P. K. Cotter, T. W. Preist, J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995).
    [CrossRef]
  15. J. Chandezon, M. T. Dupuis, G. Cornet, D. Maystre, “Multicoated gratings—a differential formalism applicable in the entire optical region,” J. Opt. Soc. Am. 72, 839–846 (1982).
    [CrossRef]
  16. R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997).
    [CrossRef]
  17. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
    [CrossRef]
  18. S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991).
    [CrossRef]
  19. R. A. Depine, M. Lester, “Internal symmetries in conical diffraction from metallic gratings,” J. Mod. Opt. 48, 1405–1411 (2001).
    [CrossRef]

2002

I. R. Hooper, J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “A broadband polarization converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152–2154 (2002).
[CrossRef]

2001

R. A. Depine, M. Lester, “Internal symmetries in conical diffraction from metallic gratings,” J. Mod. Opt. 48, 1405–1411 (2001).
[CrossRef]

L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

1999

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[CrossRef]

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

1997

R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997).
[CrossRef]

1996

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
[CrossRef]

1995

1991

S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991).
[CrossRef]

1982

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
[CrossRef]

Bryan-Brown, G. P.

S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991).
[CrossRef]

Bustarret, E.

Chandezon, J.

Cornet, G.

Cotter, N. P. K.

de Fornel, F.

L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Dechelette, A.

Depine, R. A.

R. A. Depine, M. Lester, “Internal symmetries in conical diffraction from metallic gratings,” J. Mod. Opt. 48, 1405–1411 (2001).
[CrossRef]

Dupuis, M. T.

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Elston, S. J.

S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991).
[CrossRef]

Fournier, T.

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Grillot, F. D.

L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Hooper, I. R.

I. R. Hooper, J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “A broadband polarization converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152–2154 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
[CrossRef]

Lester, M.

R. A. Depine, M. Lester, “Internal symmetries in conical diffraction from metallic gratings,” J. Mod. Opt. 48, 1405–1411 (2001).
[CrossRef]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Lopez-Rios, T.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Maystre, D.

Mendoza, F.

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Pannetier, B.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Pellerin, K. M.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Preist, T. W.

W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
[CrossRef]

N. P. K. Cotter, T. W. Preist, J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).

Salomon, L.

L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

Sambles, J. R.

I. R. Hooper, J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “A broadband polarization converting mirror for the visible region of the spectrum,” Opt. Lett. 27, 2152–2154 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
[CrossRef]

N. P. K. Cotter, T. W. Preist, J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991).
[CrossRef]

Sanchez-Dehesa, J.

F. J. Garcia-Vidal, J. Sanchez-Dehesa, A. Dechelette, E. Bustarret, T. Lopez-Rios, T. Fournier, B. Pannetier, “Localized surface plasmons in lamellar metallic gratings,” J. Lightwave Technol. 17, 2191–2195 (1999).
[CrossRef]

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

Sobnack, M. B.

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Tan, W. C.

W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Thio, T.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

Wanstall, N. P.

W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[CrossRef]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Watts, R. A.

R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Zayats, A. V.

L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Mod. Opt.

R. A. Depine, M. Lester, “Internal symmetries in conical diffraction from metallic gratings,” J. Mod. Opt. 48, 1405–1411 (2001).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nature (London)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London) 391, 667–669 (1998).
[CrossRef]

Opt. Lett.

Phys. Rev. B

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58, 6779–6782 (1998).
[CrossRef]

W. C. Tan, T. W. Preist, J. R. Sambles, N. P. Wanstall, “Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[CrossRef]

I. R. Hooper, J. R. Sambles, “Dispersion of surface plasmon polaritons on short-pitch metal gratings,” Phys. Rev. B 65, 165432 (2002).
[CrossRef]

I. R. Hooper, J. R. Sambles, “Surface plasmon polaritons on narrow-ridged short-pitch metal gratings,” Phys. Rev. B 66, 205408 (2002).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, “Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,” Phys. Rev. B 54, 6227–6224 (1996).
[CrossRef]

S. J. Elston, G. P. Bryan-Brown, J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393–6400 (1991).
[CrossRef]

Phys. Rev. Lett.

T. Lopez-Rios, F. Mendoza, F. J. Garcia-Vidal, J. Sanchez-Dehesa, B. Pannetier, “Surface shape resonances in lamellar metallic gratings,” Phys. Rev. Lett. 81, 665–668 (1998).
[CrossRef]

R. A. Watts, T. W. Preist, J. R. Sambles, “Sharp surface-plasmon resonances on deep diffraction gratings,” Phys. Rev. Lett. 79, 3978–3981 (1997).
[CrossRef]

J. A. Porto, F. J. Garcia-Vidal, J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

L. Salomon, F. D. Grillot, A. V. Zayats, F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[CrossRef] [PubMed]

M. B. Sobnack, W. C. Tan, N. P. Wanstall, T. W. Preist, J. R. Sambles, “Stationary surface plasmons on a zero-order metal grating,” Phys. Rev. Lett. 80, 5667–5670 (1998).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surface and on Gratings (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the system under consideration showing the angles used to define the grating orientation with respect to the incident light and the coordinate system.

Fig. 2
Fig. 2

Schematic of the type of grating profile used in this paper. The grating is described as a series of Gaussian ridges that are defined by their height and width (FWHM).

Fig. 3
Fig. 3

Zero-order reflectivity from a 200-nm-pitch silver grating consisting of a series of 10-nm-deep, 40-nm-wide Gaussian ridges, oriented at a 90° azimuthal angle, as a function of frequency and in-plane wave vector. (a) TM-polarized radiation, (b) TE-polarized radiation.

Fig. 4
Fig. 4

TM reflectivity from 200-nm-pitch silver gratings consisting of a series of 40-nm-wide Gaussian ridges, oriented at a 90° azimuthal angle, as a function of frequency and in-plane wave vector. (a) d = 50   nm , (b) d = 100   nm , (c) d = 200   nm , (d) d = 300   nm .

Fig. 5
Fig. 5

| H z | component of the fields (the component along the grooves) of the four lowest-energy modes on the structure described for Fig. 4(c) and with k z = 0.4 . (a) f = 0.721 × 10 15   Hz , (b) f = 0.833 × 10 15   Hz , (c) f = 1.008 × 10 15   Hz , (d) f = 1.148 × 10 15   Hz .

Fig. 6
Fig. 6

| H z | component of the fields in the x z plane through the middle-field maximum shown in Fig. 5(c) ( y = 110   nm ) .

Fig. 7
Fig. 7

Band structure for a 200-nm-pitch silver grating consisting of a series of 40-nm-wide, 50-nm-deep Gaussian ridges. The first- and second-order SPPs are shown as well as the light line and the SPP dispersion curve centered at the origin.

Fig. 8
Fig. 8

Zero-order TM reflectivities for 200-nm-pitch silver gratings consisting of a series of 40-nm-wide Gaussian ridges oriented at a 45° azimuthal angle as a function of frequency and in-plane wave vector. (a) 10-nm-deep, polarization conserved; (b) 10-nm-deep, polarization converted; (c) 50-nm-deep, polarization conserved; (d) 50-nm-deep, polarization converted; (e) 100-nm-deep, polarization conserved; (f) 100-nm-deep, polarization converted; (g) 200-nm-deep, polarization conserved; (h) 200-nm-deep, polarization converted.

Metrics