Abstract

In recent years, internal laser probing techniques that exploit the electro-optical and the thermo-optical effects have been introduced. Space-resolved and time-resolved measurements of charge-carrier and temperature distributions in the interior of semiconductor samples have thus become possible. For a profound analysis and the optimization of these measurement techniques, a physically rigorous model for simulating the entire measurement process is presented. The model includes the electrothermal device simulation of the sample’s operating condition, the calculation of the resulting refractive-index modulations, the simulation of wave propagation through the device under test, the imaging lenses and aperture holes, and the simulation of the detector response. As an essential part of this model, a numerically efficient algorithm for simulating wave propagation in large computational domains has been developed. The decisive step is introduction of a suitably chosen set of computational variables that allows a significantly coarser discretization width without loss of accuracy.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (46)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription