Abstract

The expectation-maximization (EM) algorithm for maximum-likelihood image recovery is guaranteed to converge, but it converges slowly. Its ordered-subset version (OS-EM) is used widely in tomographic image reconstruction because of its order-of-magnitude acceleration compared with the EM algorithm, but it does not guarantee convergence. Recently the ordered-subset, separable-paraboloidal-surrogate (OS-SPS) algorithm with relaxation has been shown to converge to the optimal point while providing fast convergence. We adapt the relaxed OS-SPS algorithm to the problem of image restoration. Because data acquisition in image restoration is different from that in tomography, we employ a different strategy for choosing subsets, using pixel locations rather than projection angles. Simulation results show that the relaxed OS-SPS algorithm can provide an order-of-magnitude acceleration over the EM algorithm for image restoration. This new algorithm now provides the speed and guaranteed convergence necessary for efficient image restoration.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription