Abstract

We describe a new semiautomatic image processing method for detecting the cartilage boundaries in optical coherence tomography (OCT). In particular, we focus on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. The novel boundary-detection system presented here consists of (1) an adaptive filtering technique for image enhancement and speckle reduction, (2) edge detection, and (3) edge linking by graph searching. The procedure requires several steps and can be automated. The quantitative measurements of cartilage thickness on OCT images correlated well with measurements from histology.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Automatic airway wall segmentation and thickness measurement for long-range optical coherence tomography images

Li Qi, Shenghai Huang, Andrew E. Heidari, Cuixia Dai, Jiang Zhu, Xuping Zhang, and Zhongping Chen
Opt. Express 23(26) 33992-34006 (2015)

Automated layer segmentation of macular OCT images using dual-scale gradient information

Qi Yang, Charles A. Reisman, Zhenguo Wang, Yasufumi Fukuma, Masanori Hangai, Nagahisa Yoshimura, Atsuo Tomidokoro, Makoto Araie, Ali S. Raza, Donald C. Hood, and Kinpui Chan
Opt. Express 18(20) 21293-21307 (2010)

Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation

Stephanie J. Chiu, Xiao T. Li, Peter Nicholas, Cynthia A. Toth, Joseph A. Izatt, and Sina Farsiu
Opt. Express 18(18) 19413-19428 (2010)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription