Abstract

We consider the coherent reflection and transmission of electromagnetic waves from a slab of a dilute system of randomly located, polarizable, spherical particles. We focus our attention on the case where the size of the spheres is comparable to the wavelength of the incident radiation. First, using wave-scattering and Mie theories, we derive expressions for the coherent fields that are transmitted and reflected by a very thin slab. Then we find the effective-current distribution that would act as a source of these fields. We conclude that if the effective currents were induced in an effective medium, this medium must possess, besides an effective electric permittivity, also an effective magnetic permeability. We find that both of these optical coefficients become functions of the angle of incidence and the polarization of the incident wave. Then we calculate the reflection coefficient of a half-space by considering a semi-infinite pile of thin slabs and compare the result with Fresnel relations. Numerical results are presented for the optical coefficients as well as for the half-space reflectance as a function of several parameters. The reflectance is compared with that obtained without considering the magnetic response. Finally, we discuss the relevance and the physics behind our results and indicate as well the measurements that could be performed to obtain an experimental verification of our theory.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (76)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription