Abstract

We describe a rigorous model for the scattering of a three-dimensional focused spot by a one-dimensional periodic grating. The incident field is decomposed into a sum of quasi-periodic fields, and the scattering of each of these is computed inside one unit cell of the grating. The model is applied to the simulation of the readout of a DVD disk. The polarization dependence of the reflected near and far fields is studied, and, for a TM-polarized incident spot, plasmons are observed in the reflected far-field intensity.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Finite-element model for three-dimensional optical scattering problems

Xiuhong Wei, Arthur J. Wachters, and H. Paul Urbach
J. Opt. Soc. Am. A 24(3) 866-881 (2007)

Optical diffraction of focused spots and subwavelength structures

D. S. Marx and D. Psaltis
J. Opt. Soc. Am. A 14(6) 1268-1278 (1997)

Finite-element model for phase-change recording

J. H. Brusche, H. P. Urbach, and A. Segal
J. Opt. Soc. Am. A 22(4) 773-786 (2005)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (16)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (78)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription