Abstract

We have developed an accurate and robust phase-estimation method in phase-shifting electronic speckle pattern interferometry. Unlike other methods that assume a constant phase within a fitting window, our method treats the phase variation with a gradient. A cost function that can utilize the information of pixel positions is formulated on the basis of a least-squares criterion. Powell’s iteration method is applied to it to derive the phase and its gradient. An automatic consistency-checking routine and an algorithm that improves the initial guess of the iteration are developed for severe situations with large noise and steep phase variations.

© 2003 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription