Abstract

A matrix method is developed that allows a new set of Zernike coefficients that describe a surface or wave front appropriate for a new aperture size to be found from an original set of Zernike coefficients that describe the same surface or wave front but use a different aperture size. The new set of coefficients, arranged as elements of a vector, is formed by multiplying the original set of coefficients, also arranged as elements of a vector, by a conversion matrix formed from powers of the ratio of the new to the original aperture and elements of a matrix that forms the weighting coefficients of the radial Zernike polynomial functions. In developing the method, a new matrix method for expressing Zernike polynomial functions is introduced and used. An algorithm is given for creating the conversion matrix along with computer code to implement the algorithm.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (37)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription