Abstract

We introduce a generalized diffusion equation that models the propagation of photons in highly scattering domains with thin nonscattering clear layers. Classical diffusion models break down in the presence of clear layers. The model that we propose accurately accounts for the clear-layer effects and has a computational cost comparable to that of classical diffusion. It is based on modeling the propagation in the clear layer as a local tangential diffusion process. It can be justified mathematically in the limit of small mean free paths and is shown numerically to be very accurate in two- and three-dimensional idealized cases. We believe that this model can be used as an accurate forward model in optical tomography.

© 2003 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transport- and diffusion-based optical tomography in small domains: a comparative study

Kui Ren, Guillaume Bal, and Andreas H. Hielscher
Appl. Opt. 46(27) 6669-6679 (2007)

Optical tomography in the presence of void regions

Hamid Dehghani, Simon R. Arridge, Martin Schweiger, and David T. Delpy
J. Opt. Soc. Am. A 17(9) 1659-1670 (2000)

Comparison of light scattering models for diffuse optical tomography

Pedro González-Rodríguez and Arnold D. Kim
Opt. Express 17(11) 8756-8774 (2009)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription