Abstract

We present, to our knowledge for the first time, results of ultrasound-modulated light signals on living tissues. In particular, we analyze, both theoretically and experimentally, the effect of speckle fluctuations on the signal. We find that two different kinds of noise compete—shot noise and speckle noise—and are present at different levels in static phantoms and ex vivo tissue samples on the one hand and in dynamic phantoms and living tissues on the other hand.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Statistical Optics (Wiley, New York, 1984).
  2. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1987).
  3. D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.
  4. L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903-1–043903-4 (2001).
    [Crossref]
  5. W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
    [Crossref]
  6. V. Tuchin, Tissue optics, Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, Wash., 2000), pp. 153–160.
  7. M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), pp. 1019–1030.
  8. A. Lev, Z. Kotler, B. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25, 378–380 (2000).
    [Crossref]
  9. S. J. Matcher, M. Cope, D. T. Delpy, “In vivo measurements of the wavelength dependence of tissue scattering coefficients between 760 and 900 nm measured with time resolved spectroscopy,” Appl. Opt. 36, 386–391 (1997).
    [Crossref] [PubMed]
  10. M. Kempe, M. Larionov, D. Zaslavski, A. Z. Genack, “Acousto-optic tomography with multiply scattered light,” J. Opt. Soc. Am. A 14, 1151–1158 (1997).
    [Crossref]
  11. S. Leveque, A. C. Boccara, M. Lebec, H. Saint-Jalmes, “Ultrasonic tagging of photon paths in scattering media: parallel speckle modulation processing,” Opt. Lett. 24, 181–183 (1999).
    [Crossref]
  12. The experiments were performed on the authors of this paper after ensuring that the laser and ultrasound powers were below the levels permitted by the Food and Drug Administration.
  13. A. Lev, B. Sfez, “Pulsed ultrasound-modulated light tomography,” Opt. Lett. 28, 1549–1551 (2003).
    [Crossref] [PubMed]
  14. S. C. Feng, F. A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
    [Crossref]
  15. E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Inhomogeneities detection using ultrasound tagging of light,” J. Opt. Soc. Am. A 18, 1962–1967 (2001).
    [Crossref]
  16. A. Lev, B. Sfez, “Direct, noninvasive detection of photon density in turbid media,” Opt. Lett. 27, 473–475 (2002).
    [Crossref]
  17. S. B. Barnett, G. Kossoff, eds., Safety of Diagnostic Ultrasound (CRC Press UK/Parthenon Publishing Group, 1998).

2003 (1)

2002 (1)

2001 (2)

E. Granot, A. Lev, Z. Kotler, B. G. Sfez, “Inhomogeneities detection using ultrasound tagging of light,” J. Opt. Soc. Am. A 18, 1962–1967 (2001).
[Crossref]

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903-1–043903-4 (2001).
[Crossref]

2000 (1)

1999 (1)

1997 (2)

1995 (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Abramowitz, M.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), pp. 1019–1030.

Boccara, A. C.

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1987).

Chaikin, P. M.

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

Chance, B.

S. C. Feng, F. A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[Crossref]

Cope, M.

Delpy, D. T.

Feng, S. C.

S. C. Feng, F. A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[Crossref]

Genack, A. Z.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1984).

Granot, E.

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

Kempe, M.

Kotler, Z.

Larionov, M.

Lebec, M.

Leutz, W.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Lev, A.

Leveque, S.

Maret, G.

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

Matcher, S. J.

Pine, D. J.

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

Saint-Jalmes, H.

Sfez, B.

Sfez, B. G.

Stegun, I. A.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), pp. 1019–1030.

Tuchin, V.

V. Tuchin, Tissue optics, Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, Wash., 2000), pp. 153–160.

Wang, L.-H.

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903-1–043903-4 (2001).
[Crossref]

Weitz, D. A.

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1987).

Wolf, P. E.

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

Zaslavski, D.

Zeng, F. A.

S. C. Feng, F. A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[Crossref]

Appl. Opt. (1)

J. Opt. Soc. Am. A (2)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

L.-H. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903-1–043903-4 (2001).
[Crossref]

Physica B (1)

W. Leutz, G. Maret, “Ultrasonic modulation of multiply scattered light,” Physica B 204, 14–19 (1995).
[Crossref]

Other (8)

V. Tuchin, Tissue optics, Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, Wash., 2000), pp. 153–160.

M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972), pp. 1019–1030.

The experiments were performed on the authors of this paper after ensuring that the laser and ultrasound powers were below the levels permitted by the Food and Drug Administration.

S. C. Feng, F. A. Zeng, B. Chance, “Analytical perturbation theory of photon migration in the presence of a single absorbing or scattering defect sphere,” in Optical Tomography, Photon Migration, and Spectroscopy of Tissue and Model Media: Theory, Human Studies, and Instrumentation, B. Chance, R. R. Alfano, eds., Proc. SPIE2389, 54–63 (1995).
[Crossref]

J. W. Goodman, Statistical Optics (Wiley, New York, 1984).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, London, 1987).

D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheimer, P. M. Chaikin, “Dynamical correlations of multiply scattered light,” in Scattering and Localization of Classical Waves in Random Media, P. Sheng, ed. (World Scientific, Singapore, 1990), pp. 312–372.

S. B. Barnett, G. Kossoff, eds., Safety of Diagnostic Ultrasound (CRC Press UK/Parthenon Publishing Group, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for the experiments on phantoms. The signal from the computer is sent to a mechanically scanned ultrasound transducer by means of an amplifier stage. Light is delivered and collected with optical fibers. A photomultiplier tube (PMT) sends the signal to an analog-to-digital card. The signal is then digitally processed and displayed.

Fig. 2
Fig. 2

Power spectrum obtained for the case of static phantoms. Note the very narrow linewidth (a few tens of hertz).

Fig. 3
Fig. 3

Fluctuation of short-time power spectrum intensity with time for the case of static phantoms.

Fig. 4
Fig. 4

Autocorrelation of the short-time power spectrum intensity fluctuation for different input fiber diameters.

Fig. 5
Fig. 5

Autocorrelation time of the short-time power spectrum intensity fluctuation as a function of input fiber diameter. The error on the time is approximately 20%.

Fig. 6
Fig. 6

Normalized signal as a function of fiber core diameter.

Fig. 7
Fig. 7

Normalized power spectrum obtained on an ex vivo tissue sample (solid curve) and an Agar gel phantom (dashed curve). The ex vivo tissue sample linewidth is limited by the system frequency resolution (approximately 100 Hz).

Fig. 8
Fig. 8

Experimental setups for (a) mouse and (b) human wrist. Since the focal length of the transducer is several centimeters, it is necessary to have the ultrasonic wave propagate in a water-based medium for a certain distance. The aim of the block of Agar in (a) and of the water spacer in (b) between the transducer and the body is to allow this propagation.

Fig. 9
Fig. 9

Signal (power spectrum) obtained for living tissue (human wrist) and for water. Note the large difference in the linewidth, indicative of local motion.

Fig. 10
Fig. 10

Line signal (seven points) obtained in depth in vivo in the wrist.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Δr(t+τ, t)=A(r){sin[ks·r-ωs(t+τ)]-sin(ks·r-ωst)}
ΔΦ(α, τ)=-j=1n(α)qj·[Δrj(t+τ, t)+Δrj(t+τ, t)]=j=1n(α)Δψj+Δψj.
G1(τ, α)=E(t+τ, α)E*(t, α),
G1(τ, α)=I0exp[-iΔΦ(α, τ)],
[Δrj(t+τ, t)]2=[A(rj)]2(1-cos ωsτ)/2,
Δψj2(τ)=(1/3)k2[A(rj)]2(1-cos ωsτ).
E(t+τ, α)E*(t, α)U=I0 exp(-{(1/3)n(α)k2[A(rj)]2(1-cos ωsτ)}).
E(t+τ, α)E*(t, α)B=I0 exp[-n(α)τ/τ0],
E(t+τ, α)E*(t, α)=I0 exp(-n(α){(1/3)k2[A(rj)]2×(1-cos ωsτ)+τ/τ0}).
G1(τ)=E(t+τ)E*(t)=I00P(s)exp(-s/l*)×{(1/3)k2[A(rj)]2(1-cos ωsτ)+τ/τ0}ds,
G˜(ω)=I0- exp(-iωτ)dτ0ds P(s)exp((-s/l)×{(1/3)k2[A(rj)]2(1-cos ωsτ)+τ/τ0}).
P(s)1s5/2exp-dsexp(-μas),
d=32rsd2+1/μs2(μa+μs).
G(τ)πd3/2[u(τ)-1]exp[-2u(τ)]
u(τ)=(d/l*){(1/3)k2[A(rj)]2(1-cos ωsτ)+τ/τ0}+dμa.
G(τ)dc+0 πd3/232u0(τ)-1exp[-2u0(τ)]cos(ωsτ).
G˜(ω-ωs)00 πd3/232u0(τ)-1exp[-2u0(τ)]×cos[(ω-ωs)τ]dτ.
δωωsdl*1ωsτ0μs2rsd2ωsτ0.

Metrics