Abstract

Following the trend of increased integration in complementary metal oxide semiconductor (CMOS) image sensors, we have explored the potential of implementing light filters by using patterned metal layers placed on top of each pixel’s photodetector. To demonstrate wavelength selectivity, we designed and prototyped integrated color pixels in a standard 0.18-µm CMOS technology. Transmittance of several one-dimensional (1D) and two-dimensional (2D) patterned metal layers was measured under various illumination conditions and found to exhibit wavelength selectivity in the visible range. We performed (a) wave optics simulations to predict the spectral responsivity of an uncovered reference pixel and (b) numerical electromagnetic simulations with a 2D finite-difference time-domain method to predict transmittances through 1D patterned metal layers. We found good agreement in both cases. Finally, we used simulations to predict the transmittance for more elaborate designs.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron Devices ED-32, 1361–1389 (1985).
  2. A. J. P. Theuwissen, Solid-State Imaging with Charge-Coupled Devices, Solid-State Science and Technology Library (Kluwer Academic, Boston, Mass., 1995), p. 388.
  3. A. El Gamal, D. Yang, B. Fowler, “Pixel level processing—why, what, and how?” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 2–13.
  4. P. B. Catrysse, B. A. Wandell, A. El Gamal, “An integrated color pixel in 0.18 µm CMOS technology,” in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 559–562.
  5. J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998).
    [CrossRef]
  6. P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978).
    [CrossRef]
  7. B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).
  8. H. Nabeyama, “All-solid-state color camera with single-chip MOS imager,” IEEE Trans. Consumer Electron. CE-27, 40–45 (1981).
    [CrossRef]
  9. P. B. Catrysse, B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
    [CrossRef]
  10. A. J. Blanksby, M. J. Loinaz, “Performance analysis of a color CMOS photogate image sensor,” IEEE Trans. Electron Devices 47, 55–64 (2000).
    [CrossRef]
  11. W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.
  12. P. B. Catrysse, X. Liu, A. El Gamal, “Quantum efficiency reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 420–430.
  13. M. Böhm, H. Stiebig, “Trichromatic sensor,” U.S. Patent5,923,049 (July13, 1999).
  14. R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well strucuture,” U.S. Patent5,965,875 (October12, 1999).
  15. H. Hertz, “Ueber Strahlen electrischer Kraft,” Annal. Phys. Chem. 36, 769–783 (1889).
    [CrossRef]
  16. P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
    [CrossRef]
  17. H. Tamada, T. Doumuki, T. Yamaguchi, S. Matsumoto, “Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-µm-wavelength band,” Opt. Lett. 22, 419–421 (1997).
    [CrossRef] [PubMed]
  18. M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000).
    [CrossRef]
  19. E. R. Fossum, “Active pixel sensors: are CCD’s dinosaurs?” in Charge-Coupled Devices and Solid State Optical Sensors III, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 2–14.
  20. B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.
  21. H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.
  22. OptiFDTD 2.0, Optiwave Corporation, Ottawa, Canada, 2001.
  23. D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.
  24. E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
    [CrossRef]
  25. P. B. Catrysse, A. El Gamal, B. A. Wandell, “Comparative analysis of color architectures for image sensors,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 26–35.
  26. T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
    [CrossRef]
  27. K. Shlager, J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag.April1995, pp. 39–56.
    [CrossRef]
  28. A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).
  29. A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
    [CrossRef]
  30. E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993).
    [CrossRef]
  31. K. H. Dridi, A. Bjarklev, “Optical electromagnetic vector-field modeling for the accurate analysis of finite diffractive structures of high complexity,” Appl. Opt. 38, 1668–1676 (1999).
    [CrossRef]
  32. T. O. Körner, R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices 47, 931–938 (2000).
    [CrossRef]
  33. R. Holland, J. W. Williams, “Total-field versus scattered-field finite-difference codes: a comparative assessment,” IEEE Trans. Nucl. Sci. NS-30, 4583–4588 (1983).
    [CrossRef]
  34. S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
    [CrossRef]
  35. M. A. Ordal, “Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef] [PubMed]
  36. R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).
  37. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
    [CrossRef]
  38. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965).
    [CrossRef]
  39. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
    [CrossRef]
  40. Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403-1–57403-4 (2002).
    [CrossRef]
  41. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 596–640 (1950).
  42. F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 706–782 (1950).
  43. P. C. S. Hayfield, G. W. T. White, “An assessment of the suitability of the Drude–Tronstad polarized light method for the study of film growth on polycrystalline metals,” in Ellipsometry in the Measurement of Surfaces and Thin Films, N. M. Bashara, A. B. Buckman, A. C. Hall, eds. (National Bureau of Standards, Washington, D.C., 1964), pp. 157–200.
  44. D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1997).
  45. M. Born, E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, UK, 1980), pp. 38–41.
  46. M. V. Klein, T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986), p. 71.
  47. J. H. Weaver, H. P. R. Frederikse, eds., Optical Properties of Metals and Semiconductors, 74th ed., CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Fla., 2000), pp. 12–109 and 112–131.
  48. A. El Gamal, “EE392B: introduction to image sensors and digital cameras” (2001), retrieved 2002, http://www.stanford.edu/class/ee392b .

2002 (2)

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403-1–57403-4 (2002).
[CrossRef]

P. B. Catrysse, B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
[CrossRef]

2000 (5)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

M. A. Jensen, G. P. Nordin, “Finite-aperture wire grid polarizers,” J. Opt. Soc. Am. A 17, 2191–2198 (2000).
[CrossRef]

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

T. O. Körner, R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices 47, 931–938 (2000).
[CrossRef]

A. J. Blanksby, M. J. Loinaz, “Performance analysis of a color CMOS photogate image sensor,” IEEE Trans. Electron Devices 47, 55–64 (2000).
[CrossRef]

1999 (1)

1998 (2)

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998).
[CrossRef]

1997 (1)

1996 (1)

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

1995 (1)

K. Shlager, J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag.April1995, pp. 39–56.
[CrossRef]

1993 (1)

E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993).
[CrossRef]

1988 (1)

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[CrossRef]

1985 (1)

K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron Devices ED-32, 1361–1389 (1985).

1983 (2)

R. Holland, J. W. Williams, “Total-field versus scattered-field finite-difference codes: a comparative assessment,” IEEE Trans. Nucl. Sci. NS-30, 4583–4588 (1983).
[CrossRef]

M. A. Ordal, “Optical properties of metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
[CrossRef] [PubMed]

1981 (1)

H. Nabeyama, “All-solid-state color camera with single-chip MOS imager,” IEEE Trans. Consumer Electron. CE-27, 40–45 (1981).
[CrossRef]

1980 (1)

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

1978 (1)

P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978).
[CrossRef]

1965 (1)

1950 (2)

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 596–640 (1950).

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 706–782 (1950).

1935 (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
[CrossRef]

1889 (1)

H. Hertz, “Ueber Strahlen electrischer Kraft,” Annal. Phys. Chem. 36, 769–783 (1889).
[CrossRef]

Abelès, F.

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 596–640 (1950).

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 706–782 (1950).

Adams, J.

J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998).
[CrossRef]

Astilean, S.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Bayer, B. E.

B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).

Beiley, M.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

Benthien, S.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Bjarklev, A.

Blanksby, A. J.

A. J. Blanksby, M. J. Loinaz, “Performance analysis of a color CMOS photogate image sensor,” IEEE Trans. Electron Devices 47, 55–64 (2000).
[CrossRef]

Bliek, P. J.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

Böhm, M.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

M. Böhm, H. Stiebig, “Trichromatic sensor,” U.S. Patent5,923,049 (July13, 1999).

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, UK, 1980), pp. 38–41.

Botten, L. C.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

Cao, Q.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403-1–57403-4 (2002).
[CrossRef]

Catrysse, P. B.

P. B. Catrysse, B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
[CrossRef]

P. B. Catrysse, X. Liu, A. El Gamal, “Quantum efficiency reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 420–430.

P. B. Catrysse, A. El Gamal, B. A. Wandell, “Comparative analysis of color architectures for image sensors,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 26–35.

P. B. Catrysse, B. A. Wandell, A. El Gamal, “An integrated color pixel in 0.18 µm CMOS technology,” in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 559–562.

Cham, K.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

Cruz, J. L.

E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993).
[CrossRef]

Deleuil, R.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

Dillon, P.

P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978).
[CrossRef]

Dominguez-Castro, R.

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

Doumuki, T.

Dridi, K. H.

El Gamal, A.

P. B. Catrysse, X. Liu, A. El Gamal, “Quantum efficiency reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 420–430.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.

H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.

A. El Gamal, D. Yang, B. Fowler, “Pixel level processing—why, what, and how?” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 2–13.

P. B. Catrysse, B. A. Wandell, A. El Gamal, “An integrated color pixel in 0.18 µm CMOS technology,” in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 559–562.

P. B. Catrysse, A. El Gamal, B. A. Wandell, “Comparative analysis of color architectures for image sensors,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 26–35.

Espejo, S.

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

Fossum, E. R.

E. R. Fossum, “Active pixel sensors: are CCD’s dinosaurs?” in Charge-Coupled Devices and Solid State Optical Sensors III, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 2–14.

Fowler, B.

B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

A. El Gamal, D. Yang, B. Fowler, “Pixel level processing—why, what, and how?” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 2–13.

Frutos, F.

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

Furtak, T. E.

M. V. Klein, T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986), p. 71.

Gedney, S. D.

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

Gimeno, B.

E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993).
[CrossRef]

Gull, R.

T. O. Körner, R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices 47, 931–938 (2000).
[CrossRef]

Hagness, S. C.

A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Hayfield, P. C. S.

P. C. S. Hayfield, G. W. T. White, “An assessment of the suitability of the Drude–Tronstad polarized light method for the study of film growth on polycrystalline metals,” in Ellipsometry in the Measurement of Surfaces and Thin Films, N. M. Bashara, A. B. Buckman, A. C. Hall, eds. (National Bureau of Standards, Washington, D.C., 1964), pp. 157–200.

Hertz, H.

H. Hertz, “Ueber Strahlen electrischer Kraft,” Annal. Phys. Chem. 36, 769–783 (1889).
[CrossRef]

Hessel, A.

Holland, R.

R. Holland, J. W. Williams, “Total-field versus scattered-field finite-difference codes: a comparative assessment,” IEEE Trans. Nucl. Sci. NS-30, 4583–4588 (1983).
[CrossRef]

Hugonin, J. P.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Jensen, M. A.

Kaspar, F.

P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978).
[CrossRef]

Keller, H.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Kharitonenko, I.

W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.

Klein, M. V.

M. V. Klein, T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986), p. 71.

Kleinfelder, S.

H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.

Körner, T. O.

T. O. Körner, R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices 47, 931–938 (2000).
[CrossRef]

Lalanne, P.

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403-1–57403-4 (2002).
[CrossRef]

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Lewis, D.

P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978).
[CrossRef]

Li, W.

W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.

Lim, S. H.

H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.

Liu, X.

P. B. Catrysse, X. Liu, A. El Gamal, “Quantum efficiency reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 420–430.

Liu, X. Q.

H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.

Loinaz, M. J.

A. J. Blanksby, M. J. Loinaz, “Performance analysis of a color CMOS photogate image sensor,” IEEE Trans. Electron Devices 47, 55–64 (2000).
[CrossRef]

Lulé, T.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Matsumoto, S.

Maystre, D.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

McPhedran, R. C.

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

Merrill, R. B.

R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well strucuture,” U.S. Patent5,965,875 (October12, 1999).

Min, H.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

Moller, K. D.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Mütze, F.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Nabeyama, H.

H. Nabeyama, “All-solid-state color camera with single-chip MOS imager,” IEEE Trans. Consumer Electron. CE-27, 40–45 (1981).
[CrossRef]

Navarro, E. A.

E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993).
[CrossRef]

Nordin, G. P.

Ogunbona, P.

W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.

Oliner, A. A.

Ordal, M. A.

Palamaru, M.

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

Parulski, K.

J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998).
[CrossRef]

Parulski, K. A.

K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron Devices ED-32, 1361–1389 (1985).

Petit, R.

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).

Pozar, D. M.

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1997).

Rieve, P.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Roca, E.

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

Rodri´guez-Vázquez, A.

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

Schneider, J.

K. Shlager, J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag.April1995, pp. 39–56.
[CrossRef]

Shlager, K.

K. Shlager, J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag.April1995, pp. 39–56.
[CrossRef]

Siebel, K.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Sommer, M.

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

Spaulding, K.

J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998).
[CrossRef]

Stiebig, H.

M. Böhm, H. Stiebig, “Trichromatic sensor,” U.S. Patent5,923,049 (July13, 1999).

Taflove, A.

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[CrossRef]

A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

Tamada, H.

Theuwissen, A. J. P.

A. J. P. Theuwissen, Solid-State Imaging with Charge-Coupled Devices, Solid-State Science and Technology Library (Kluwer Academic, Boston, Mass., 1995), p. 388.

Tian, H.

B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.

H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.

Wandell, B. A.

P. B. Catrysse, B. A. Wandell, “Optical efficiency of image sensor pixels,” J. Opt. Soc. Am. A 19, 1610–1620 (2002).
[CrossRef]

P. B. Catrysse, B. A. Wandell, A. El Gamal, “An integrated color pixel in 0.18 µm CMOS technology,” in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 559–562.

P. B. Catrysse, A. El Gamal, B. A. Wandell, “Comparative analysis of color architectures for image sensors,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 26–35.

White, G. W. T.

P. C. S. Hayfield, G. W. T. White, “An assessment of the suitability of the Drude–Tronstad polarized light method for the study of film growth on polycrystalline metals,” in Ellipsometry in the Measurement of Surfaces and Thin Films, N. M. Bashara, A. B. Buckman, A. C. Hall, eds. (National Bureau of Standards, Washington, D.C., 1964), pp. 157–200.

Williams, J. W.

R. Holland, J. W. Williams, “Total-field versus scattered-field finite-difference codes: a comparative assessment,” IEEE Trans. Nucl. Sci. NS-30, 4583–4588 (1983).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, UK, 1980), pp. 38–41.

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
[CrossRef]

Yamaguchi, T.

Yang, D.

A. El Gamal, D. Yang, B. Fowler, “Pixel level processing—why, what, and how?” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 2–13.

B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

Yu, S.

W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.

Ann. Phys. (2)

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 596–640 (1950).

F. Abelès, “Recherches sur la propagation des ondes électromagnétiques sinusoïdales dans les milieux stratifiés: application aux couches minces,” Ann. Phys. 5, 706–782 (1950).

Annal. Phys. Chem. (1)

H. Hertz, “Ueber Strahlen electrischer Kraft,” Annal. Phys. Chem. 36, 769–783 (1889).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

E. A. Navarro, B. Gimeno, J. L. Cruz, “Modelling of periodic structures using finite difference time domain method combined with the Floquet theorem,” Electron. Lett. 29, 446–447 (1993).
[CrossRef]

IEEE Micro (1)

J. Adams, K. Parulski, K. Spaulding, “Color processing in digital cameras,” IEEE Micro 18, 20–30 (1998).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD Lattices,” IEEE Trans. Antennas Propag. 44, 1630–1639 (1996).
[CrossRef]

IEEE Trans. Antennas Propag. Mag. (1)

K. Shlager, J. Schneider, “A selective survey of the finite-difference time-domain literature,” IEEE Trans. Antennas Propag. Mag.April1995, pp. 39–56.
[CrossRef]

IEEE Trans. Consumer Electron. (1)

H. Nabeyama, “All-solid-state color camera with single-chip MOS imager,” IEEE Trans. Consumer Electron. CE-27, 40–45 (1981).
[CrossRef]

IEEE Trans. Electron Devices (5)

A. J. Blanksby, M. J. Loinaz, “Performance analysis of a color CMOS photogate image sensor,” IEEE Trans. Electron Devices 47, 55–64 (2000).
[CrossRef]

K. A. Parulski, “Color filters and processing alternatives for one-chip cameras,” IEEE Trans. Electron Devices ED-32, 1361–1389 (1985).

P. Dillon, D. Lewis, F. Kaspar, “Color imaging using a single CCD array,” IEEE Trans. Electron Devices ED-25, 102–107 (1978).
[CrossRef]

T. Lulé, S. Benthien, H. Keller, F. Mütze, P. Rieve, K. Siebel, M. Sommer, M. Böhm, “Sensitivity of CMOS based imagers and scaling perspectives,” IEEE Trans. Electron Devices 47, 2110–2122 (2000).
[CrossRef]

T. O. Körner, R. Gull, “Combined optical/electric simulation of CCD cell structures by means of the finite-difference time-domain method,” IEEE Trans. Electron Devices 47, 931–938 (2000).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

E. Roca, F. Frutos, S. Espejo, R. Dominguez-Castro, A. Rodrı́guez-Vázquez, “Electrooptical measurement system for the DC characterization of visible detectors for CMOS-compatible vision chips,” IEEE Trans. Instrum. Meas. 47, 499–506 (1998).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. J. Bliek, L. C. Botten, R. Deleuil, R. C. McPhedran, D. Maystre, “Inductive grids in the region of diffraction anomalies: theory, experiments and applications,” IEEE Trans. Microwave Theory Tech. 28, 1119–1125 (1980).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

R. Holland, J. W. Williams, “Total-field versus scattered-field finite-difference codes: a comparative assessment,” IEEE Trans. Nucl. Sci. NS-30, 4583–4588 (1983).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, K. D. Moller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A, Pure Appl. Opt. 2, 48–51 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Phys. Rev. (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928–936 (1935).
[CrossRef]

Phys. Rev. Lett. (1)

Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 57403-1–57403-4 (2002).
[CrossRef]

Wave Motion (1)

A. Taflove, “Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures,” Wave Motion 10, 547–582 (1988).
[CrossRef]

Other (22)

A. Taflove, S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, Mass., 2000).

P. C. S. Hayfield, G. W. T. White, “An assessment of the suitability of the Drude–Tronstad polarized light method for the study of film growth on polycrystalline metals,” in Ellipsometry in the Measurement of Surfaces and Thin Films, N. M. Bashara, A. B. Buckman, A. C. Hall, eds. (National Bureau of Standards, Washington, D.C., 1964), pp. 157–200.

D. M. Pozar, Microwave Engineering, 2nd ed. (Wiley, New York, 1997).

M. Born, E. Wolf, Principles of Optics, 6th (corrected) ed. (Pergamon, Oxford, UK, 1980), pp. 38–41.

M. V. Klein, T. E. Furtak, Optics, 2nd ed., Wiley Series in Pure and Applied Optics (Wiley, New York, 1986), p. 71.

J. H. Weaver, H. P. R. Frederikse, eds., Optical Properties of Metals and Semiconductors, 74th ed., CRC Handbook of Chemistry and Physics (CRC, Boca Raton, Fla., 2000), pp. 12–109 and 112–131.

A. El Gamal, “EE392B: introduction to image sensors and digital cameras” (2001), retrieved 2002, http://www.stanford.edu/class/ee392b .

E. R. Fossum, “Active pixel sensors: are CCD’s dinosaurs?” in Charge-Coupled Devices and Solid State Optical Sensors III, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1993), pp. 2–14.

B. Fowler, A. El Gamal, D. Yang, H. Tian, “A method for estimating quantum efficiency for CMOS image sensors,” in Solid State Sensor Arrays: Development and Applications II, M. M. Blouke, ed. (SPIE Press, Bellingham, Wash., 1998), pp. 178–185.

H. Tian, X. Q. Liu, S. H. Lim, S. Kleinfelder, A. El Gamal, “Active pixel sensors fabricated in a standard 0.18 µm CMOS technology,” in Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications II, M. M. Blouke, J. Canosa, N. Sampat, eds. (SPIE Press, Bellingham, Wash., 2001), pp. 441–449.

OptiFDTD 2.0, Optiwave Corporation, Ottawa, Canada, 2001.

D. Yang, H. Min, B. Fowler, A. El Gamal, M. Beiley, K. Cham, “Test structures for characterization and comparative analysis of CMOS image sensors,” in Advanced Focal Plane Arrays and Electronic Cameras, T. M. Bernard, ed. (SPIE Press, Bellingham, Wash., 1996), pp. 8–17.

P. B. Catrysse, A. El Gamal, B. A. Wandell, “Comparative analysis of color architectures for image sensors,” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 26–35.

B. E. Bayer, “Color imaging array,” U.S. Patent3,971,065 (July20, 1976).

A. J. P. Theuwissen, Solid-State Imaging with Charge-Coupled Devices, Solid-State Science and Technology Library (Kluwer Academic, Boston, Mass., 1995), p. 388.

A. El Gamal, D. Yang, B. Fowler, “Pixel level processing—why, what, and how?” in Sensors, Cameras, and Applications for Digital Photography, N. Sampat, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 1999), pp. 2–13.

P. B. Catrysse, B. A. Wandell, A. El Gamal, “An integrated color pixel in 0.18 µm CMOS technology,” in 2001 International Electron Devices Meeting—Technical Digest (Institute of Electrical and Electronics Engineers, New York, 2001), pp. 559–562.

W. Li, P. Ogunbona, S. Yu, I. Kharitonenko, “Modelling of color cross-talk in CMOS image sensors,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (Institute of Electrical and Electronics Engineers, New York, 2002), pp. 3576–3579.

P. B. Catrysse, X. Liu, A. El Gamal, “Quantum efficiency reduction due to pixel vignetting in CMOS image sensors,” in Sensors and Camera Systems for Scientific, Industrial and Digital Photography Applications, M. M. Blouke, N. Sampat, G. M. Williams, T. Yeh, eds. (SPIE Press, Bellingham, Wash., 2000), pp. 420–430.

M. Böhm, H. Stiebig, “Trichromatic sensor,” U.S. Patent5,923,049 (July13, 1999).

R. B. Merrill, “Color separation in an active pixel cell imaging array using a triple-well strucuture,” U.S. Patent5,965,875 (October12, 1999).

R. Petit, Electromagnetic Theory of Gratings, Vol. 22 of Topics in Current Physics (Springer-Verlag, Berlin, 1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics