Abstract

Owing to their promise of obtaining optical as well as topographic information in nanometer scale, apertureless near-field scanning optical microscopy (NSOM) and apertureless near-field scanning optical spectroscopy have drawn much attention recently. However, NSOM is still not a mature technique. A proper understanding of and the ability to tune the near field around the tip end is critically important in NSOM instrumentation and in NSOM image interpretation. On the basis of reflection geometry, we systematically studied the effects of a number of parameters pertinent in the application of apertureless NSOM, e.g., polarization, incident angle, wavelength of the incident laser, tip material, and tip length, by using the generalized field propagator technique. Our results show that all the above parameters have a significant influence on near-field enhancement and that care must be taken in the design of the experiment in order to maximize the near field. In addition to apertureless NSOM and spectroscopy, apertureless near-field lithography can benefit from these simulation results.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multipole scattering,” Opt. Commun. 132, 170–178 (1996).
    [CrossRef]
  2. D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
    [CrossRef]
  3. M. Tanaka, K. Tanaka, “Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe,” J. Opt. Soc. Am. A 18, 919–925 (2001).
    [CrossRef]
  4. N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
    [CrossRef]
  5. H. Sasaki, Y. Sasaki, “Imaging of refractive index change by the reflection-mode scattering-type scanning near-field optical microscope: simulation and observations,” J. Appl. Phys. 85, 2026–2030 (1999).
    [CrossRef]
  6. M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
    [CrossRef]
  7. R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2001).
    [CrossRef] [PubMed]
  8. B. Knoll, F. Keilmann, “Enahnced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
    [CrossRef]
  9. A. Madrazo, M. Nieto-Vesperinas, N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
    [CrossRef]
  10. M. Quinten, “Evanescent wave scattering by aggregates of clusters-application to optical near-field microscopy,” Appl. Phys. B 70, 579–586 (2000).
    [CrossRef]
  11. F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
    [CrossRef]
  12. F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
    [CrossRef] [PubMed]
  13. L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
    [CrossRef]
  14. N. Garcia, M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval,” Opt. Lett. 20, 949–951 (1996).
    [CrossRef]
  15. N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
    [CrossRef]
  16. H. Furukawa, S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun. 148, 221–224 (1998).
    [CrossRef]
  17. J. L. Bohn, D. J. Nesbitt, A. Gallagher, “Field enhancement in apertureless scanning optical microscopy,” J. Opt. Soc. Am. A 18, 2998–3006 (2001).
    [CrossRef]
  18. W. X. Sun, Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy 94, 237–244 (2003).
    [CrossRef] [PubMed]
  19. W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
    [CrossRef]
  20. Y. C. Martin, H. F. Hamann, H. K. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
    [CrossRef]
  21. J. T. Krug, E. J. Sánchez, X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
    [CrossRef]
  22. O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
    [CrossRef]
  23. O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
    [CrossRef] [PubMed]
  24. J. B. Judkins, R. W. Ziolowski, “Finite-difference time-domain modeling of non-perfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995).
    [CrossRef]
  25. E. N. Economou, Green’s Functions in Quantum Physics, 2nd ed. (Springer, Berlin, 1990).
  26. P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
    [CrossRef]
  27. L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
    [CrossRef]

2003 (1)

W. X. Sun, Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy 94, 237–244 (2003).
[CrossRef] [PubMed]

2002 (1)

J. T. Krug, E. J. Sánchez, X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[CrossRef]

2001 (4)

Y. C. Martin, H. F. Hamann, H. K. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

M. Tanaka, K. Tanaka, “Computer simulation for two-dimensional near-field optics with use of a metal-coated dielectric probe,” J. Opt. Soc. Am. A 18, 919–925 (2001).
[CrossRef]

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2001).
[CrossRef] [PubMed]

J. L. Bohn, D. J. Nesbitt, A. Gallagher, “Field enhancement in apertureless scanning optical microscopy,” J. Opt. Soc. Am. A 18, 2998–3006 (2001).
[CrossRef]

2000 (3)

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

M. Quinten, “Evanescent wave scattering by aggregates of clusters-application to optical near-field microscopy,” Appl. Phys. B 70, 579–586 (2000).
[CrossRef]

B. Knoll, F. Keilmann, “Enahnced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

1999 (2)

H. Sasaki, Y. Sasaki, “Imaging of refractive index change by the reflection-mode scattering-type scanning near-field optical microscope: simulation and observations,” J. Appl. Phys. 85, 2026–2030 (1999).
[CrossRef]

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

1998 (2)

H. Furukawa, S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun. 148, 221–224 (1998).
[CrossRef]

P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
[CrossRef]

1997 (2)

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

1996 (3)

N. Garcia, M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval,” Opt. Lett. 20, 949–951 (1996).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multipole scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

1995 (6)

D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
[CrossRef]

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[CrossRef]

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

J. B. Judkins, R. W. Ziolowski, “Finite-difference time-domain modeling of non-perfectly conducting metallic thin-film gratings,” J. Opt. Soc. Am. A 12, 1974–1983 (1995).
[CrossRef]

1994 (1)

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

1991 (1)

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Bohn, J. L.

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
[CrossRef]

Christensen, D. A.

D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
[CrossRef]

de Fornel, F.

P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
[CrossRef]

Denk, W.

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Dereux, A.

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Dufour, J. P.

P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
[CrossRef]

Ebina, A.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Economou, E. N.

E. N. Economou, Green’s Functions in Quantum Physics, 2nd ed. (Springer, Berlin, 1990).

Furukawa, H.

H. Furukawa, S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun. 148, 221–224 (1998).
[CrossRef]

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multipole scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

Gallagher, A.

Garcia, N.

A. Madrazo, M. Nieto-Vesperinas, N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

N. Garcia, M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval,” Opt. Lett. 20, 949–951 (1996).
[CrossRef]

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[CrossRef]

Girard, C.

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Hamann, H. F.

Y. C. Martin, H. F. Hamann, H. K. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

Hayazawa, N.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Hecht, B.

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

Hillenbrand, R.

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2001).
[CrossRef] [PubMed]

Horiguchi, T.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Horikawa, Y.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Inouye, Y.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Judkins, J. B.

Kawata, S.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

H. Furukawa, S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun. 148, 221–224 (1998).
[CrossRef]

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multipole scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

Keilmann, F.

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2001).
[CrossRef] [PubMed]

B. Knoll, F. Keilmann, “Enahnced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

Knoll, B.

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2001).
[CrossRef] [PubMed]

B. Knoll, F. Keilmann, “Enahnced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

Konada, T.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Krug, J. T.

J. T. Krug, E. J. Sánchez, X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[CrossRef]

Madrazo, A.

A. Madrazo, M. Nieto-Vesperinas, N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

Martin, O. J. F.

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Martin, Y. C.

Y. C. Martin, H. F. Hamann, H. K. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

Nesbitt, D. J.

Nieto-Vesperinas, M.

N. Garcia, M. Nieto-Vesperinas, “Direct solution to the inverse scattering problem for surfaces from near-field intensities without phase retrieval,” Opt. Lett. 20, 949–951 (1996).
[CrossRef]

A. Madrazo, M. Nieto-Vesperinas, N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[CrossRef]

Novotny, L.

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

O’Boyle, M. P.

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Pohl, D. W.

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Quinten, M.

M. Quinten, “Evanescent wave scattering by aggregates of clusters-application to optical near-field microscopy,” Appl. Phys. B 70, 579–586 (2000).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
[CrossRef]

Sánchez, E. J.

J. T. Krug, E. J. Sánchez, X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[CrossRef]

Sasaki, H.

H. Sasaki, Y. Sasaki, “Imaging of refractive index change by the reflection-mode scattering-type scanning near-field optical microscope: simulation and observations,” J. Appl. Phys. 85, 2026–2030 (1999).
[CrossRef]

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Sasaki, Y.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

H. Sasaki, Y. Sasaki, “Imaging of refractive index change by the reflection-mode scattering-type scanning near-field optical microscope: simulation and observations,” J. Appl. Phys. 85, 2026–2030 (1999).
[CrossRef]

Sekkat, Z.

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

Shen, Z. X.

W. X. Sun, Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy 94, 237–244 (2003).
[CrossRef] [PubMed]

Sun, W. X.

W. X. Sun, Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy 94, 237–244 (2003).
[CrossRef] [PubMed]

Tanaka, K.

Tanaka, M.

Umezawa, T.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Wickramasinghe, H. K.

Y. C. Martin, H. F. Hamann, H. K. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Xie, X. S.

J. T. Krug, E. J. Sánchez, X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[CrossRef]

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

Ziolowski, R. W.

Appl. Phys. B (1)

M. Quinten, “Evanescent wave scattering by aggregates of clusters-application to optical near-field microscopy,” Appl. Phys. B 70, 579–586 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

F. Zenhausern, M. P. O’Boyle, H. K. Wickramasinghe, “Apertureless near-field optical microscope,” Appl. Phys. Lett. 65, 1623–1625 (1994).
[CrossRef]

N. Garcia, M. Nieto-Vesperinas, “Theory for the apertureless near-field optical microscope: image resolution,” Appl. Phys. Lett. 66, 3399–3400 (1995).
[CrossRef]

O. J. F. Martin, C. Girard, “Controlling and tuning strong optical field gradients at a local probe microscope tip apex,” Appl. Phys. Lett. 70, 705–707 (1997).
[CrossRef]

J. Appl. Phys. (2)

Y. C. Martin, H. F. Hamann, H. K. Wickramasinghe, “Strength of the electric field in apertureless near-field optical microscopy,” J. Appl. Phys. 89, 5774–5778 (2001).
[CrossRef]

H. Sasaki, Y. Sasaki, “Imaging of refractive index change by the reflection-mode scattering-type scanning near-field optical microscope: simulation and observations,” J. Appl. Phys. 85, 2026–2030 (1999).
[CrossRef]

J. Chem. Phys. (1)

J. T. Krug, E. J. Sánchez, X. S. Xie, “Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation,” J. Chem. Phys. 116, 10895–10901 (2002).
[CrossRef]

J. Microsc. (2)

M. Yamaguchi, Y. Sasaki, H. Sasaki, T. Konada, Y. Horikawa, A. Ebina, T. Umezawa, T. Horiguchi, “Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy,” J. Microsc. 194, 552–557 (1999).
[CrossRef]

R. Hillenbrand, B. Knoll, F. Keilmann, “Pure optical contrast in scattering-type scanning near-field microscopy,” J. Microsc. 202, 77–83 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Vac. Sci. Technol. B (1)

W. Denk, D. W. Pohl, “Near-field optics: microscopy with nanometer-size fields,” J. Vac. Sci. Technol. B 9, 510–513 (1991).
[CrossRef]

Opt. Commun. (4)

N. Hayazawa, Y. Inouye, Z. Sekkat, S. Kawata, “Metallized tip amplification of near-field Raman scattering,” Opt. Commun. 183, 333–336 (2000).
[CrossRef]

H. Furukawa, S. Kawata, “Local field enhancement with an apertureless near-field-microscope probe,” Opt. Commun. 148, 221–224 (1998).
[CrossRef]

H. Furukawa, S. Kawata, “Analysis of image formation in a near-field scanning optical microscope: effects of multipole scattering,” Opt. Commun. 132, 170–178 (1996).
[CrossRef]

B. Knoll, F. Keilmann, “Enahnced dielectric contrast in scattering-type scanning near-field optical microscopy,” Opt. Commun. 182, 321–328 (2000).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (2)

A. Madrazo, M. Nieto-Vesperinas, N. Garcia, “Exact calculation of Maxwell equations for a tip-metallic interface configuration: application to atomic resolution by photon emission,” Phys. Rev. B 53, 3654–3657 (1996).
[CrossRef]

P. C. Chaumet, A. Rahmani, F. de Fornel, J. P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998).
[CrossRef]

Phys. Rev. Lett. (2)

L. Novotny, R. X. Bian, X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997).
[CrossRef]

O. J. F. Martin, C. Girard, A. Dereux, “Generalized field propagator for electromagnetic scattering and light confinement,” Phys. Rev. Lett. 74, 526–529 (1995).
[CrossRef] [PubMed]

Science (1)

F. Zenhausern, Y. Martin, H. K. Wickramasinghe, “Scanning interferometric apertureless microscopy: optical imaging at 10 angstrom resolution,” Science 269, 1083–1085 (1995).
[CrossRef] [PubMed]

Ultramicroscopy (3)

L. Novotny, D. W. Pohl, B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

D. A. Christensen, “Analysis of near field tip patterns including object interaction using finite-difference time-domain calculations,” Ultramicroscopy 57, 189–195 (1995).
[CrossRef]

W. X. Sun, Z. X. Shen, “Apertureless near-field scanning Raman microscopy using reflection scattering geometry,” Ultramicroscopy 94, 237–244 (2003).
[CrossRef] [PubMed]

Other (1)

E. N. Economou, Green’s Functions in Quantum Physics, 2nd ed. (Springer, Berlin, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the simulated tip, which has a conical shape and a spherical end. θ is the incident angle of the laser. The tip length is the length of the conical part rather than of the whole tip. The half-angle of the cone is 15°.

Fig. 2
Fig. 2

Simulation results for (a) and (c) p-polarized and (b) s-polarized incident beams for laser wavelength λ 488 nm and incident angle 15°. The tip length l is 3λ and the tip size s is λ/80. In (a) and (b), the observation plane is 1/7 tip size below the tip end, and in (c) it is 3/7 tip size below the tip end.

Fig. 3
Fig. 3

Dependence of near-field enhancement on incident angle. The incident beam is p polarized with a wavelength of λ=488 nm. The tip length l is 3λ, with tip size s=λ/80 and half-angle α=15°. (a) Solid line and dashed curves represent the electric field sampled at planes that are 1/7s and 2/7s, respectively, below the tip end. Note that the two curves give the same dependence of near-field enhancement on incident angle. (b) Dependence of near-field enhancement on incident angle for different tip lengths. The observation plane is 1/7s below the tip end. The half-angle and the size of the tip are the same as those in (a).

Fig. 4
Fig. 4

Maximum enhancement and optimal incident angle for different tip lengths.

Fig. 5
Fig. 5

Angular dependence of near-field enhancement simulated with four-layer [dashed curve (A)] and five-layer [solid curve (B)] structures. The tip length is 3λ. Electric field sampling point is 1/7s below the tip end.

Fig. 6
Fig. 6

Electric field distribution in the YZ plane.

Fig. 7
Fig. 7

Dependence of near-field enhancement on wavelength for a silver tip. The tip length is 3.25λ, with a tip size of λ/80 and a half-angle of 15°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(r)=dr[δ(r-r)-k2G(r, r, ω)·s(r, ω)]·E0(r),
Gi,j=Gi,j0-k2p=1NGi,p0psGp,jΔp,

Metrics