Abstract

Visual sensitivity is a process that allows the visual system to maintain optimal response over a wide range of ambient light levels and chromaticities. Several studies have used variants of the probe–flash paradigm to show that the time course of adaptation to abrupt changes in ambient luminance depends on both receptoral and postreceptoral mechanisms. Though a few studies have explored how these processes govern adaptation to color changes, most of this effort has targeted the L–M-cone pathway. The purpose of our work was to use the probe–flash paradigm to more fully explore light adaptation in both the L–M- and the S-cone pathways. We measured sensitivity to chromatic probes presented after the onset of a 2-s chromatic flash. Test and flash stimuli were spatially coextensive 2° fields presented in Maxwellian view. Flash stimuli were presented as excursions from white and could extended in one of two directions along an equiluminant L–M-cone or S-cone line. Probes were presented as excursions from the adapting flash chromaticity and could extend either toward the spectrum locus or toward white. For both color lines, the data show a fast and slow adaptation component, although this was less evident in the S-cone data. The fast and slow components were modeled as first- and second-site adaptive processes, respectively. We find that the time course of adaptation is different for the two cardinal pathways. In addition, the time course for S-cone stimulation is polarity dependent. Our results characterize the rapid time course of adaptation in the chromatic pathways and reveal that the mechanics of adaptation within the S-cone pathway are distinct from those in the L–M-cone pathways.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Geisler, “Adaptation, afterimage and cone saturation,” Vision Res. 18, 279–289 (1978).
    [Crossref]
  2. D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
    [Crossref] [PubMed]
  3. M. A. Finkelstein, D. C. Hood, “Cone system saturation: more than one stage of sensitivity loss,” Vision Res. 21, 319–328 (1981).
    [Crossref] [PubMed]
  4. M. A. Finkelstein, M. Harrison, D. C. Hood, “Sites of sensitivity control within a long-wavelength cone pathway,” Vision Res. 30, 1145–1158 (1990).
    [Crossref] [PubMed]
  5. D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
    [Crossref] [PubMed]
  6. C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
    [Crossref] [PubMed]
  7. Q. Zaidi, A. Shapiro, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
    [Crossref] [PubMed]
  8. A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
    [Crossref] [PubMed]
  9. D. C. Hood, “Lower-level visual processing and models of light adaptation,” Ann. Rev. Psychol. 49, 503–535 (1998).
    [Crossref]
  10. M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
    [Crossref]
  11. W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).
  12. M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
    [Crossref] [PubMed]
  13. H. D. Baker, M. D. Doran, K. E. Miller, “Early dark adaptation to dim luminances,” J. Opt. Soc. Am. 49, 1065–1070 (1959).
    [Crossref] [PubMed]
  14. R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (N.Y.) 58, 541–550 (1963).
  15. L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminances: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
    [Crossref]
  16. T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
    [Crossref] [PubMed]
  17. P. J. DeMarco, R. A. Hughes, T. J. Purkiss, “Increment and decrement detection on temporally modulated fields,” Vision Res. 40, 1907–1919 (2000).
    [Crossref] [PubMed]
  18. T. Saito, Y. Fukada, “Research note: gain control mechanisms within the receptive field center of cat’s retinal ganglion cells,” Vision Res. 15, 1407–1410 (1975).
    [Crossref] [PubMed]
  19. R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retinal Res. 3, 263–346 (1984).
    [Crossref]
  20. W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23, 1423–1432 (1983).
    [Crossref] [PubMed]
  21. N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
    [Crossref] [PubMed]
  22. D. C. Hood, N. Graham, “Threshold fluctuations on temporally modulated backgrounds: a possible physiological explanation based upon a recent computational model,” Visual Neurosci. 15, 957–967 (1998).
    [Crossref]
  23. D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
    [Crossref] [PubMed]
  24. D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
    [Crossref] [PubMed]
  25. E. G. Augenstein, E. N. J. Pugh, “The dynamics of the π-1 colour mechanism: further evidence for two sites of adaptation,” J. Physiol. (London) 272, 247–281 (1977).
  26. O. Rinner, K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
    [Crossref] [PubMed]
  27. A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time-course of S-cone system adaptation to simple and complex fields,” Vision Res. 43, 1135–1147 (2003).
    [Crossref] [PubMed]
  28. D. C. Hood, M. A. Finkelstein, “Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system,” J. Exp. Psychol. Hum. Percept. Perform. 5, 391–405 (1979).
    [Crossref] [PubMed]
  29. Y. Nakano, “Color vision mathematics: a tutorial,” in Human Color Vision (Optical Society of America, Washington, D.C., 1996), App., Part III, pp. 544–562.
  30. J. Pokorny, V. C. Smith, M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618–1623 (1989).
    [Crossref] [PubMed]
  31. G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
    [Crossref]
  32. V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
    [Crossref] [PubMed]
  33. J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
    [Crossref] [PubMed]
  34. J. Krauskopf, K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
    [Crossref] [PubMed]
  35. J. S. McLellan, R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vision Res. 40, 2449–2465 (2000).
    [Crossref] [PubMed]
  36. Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
    [Crossref] [PubMed]
  37. C. F. I. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
    [Crossref] [PubMed]
  38. J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
    [Crossref] [PubMed]
  39. E. N. J. Pugh, J. D. Mollon, “A theory of the p1 and p3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
    [Crossref]
  40. D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
    [Crossref] [PubMed]
  41. P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
    [Crossref] [PubMed]
  42. A. Reeves, “Exchange thresholds for long-wavelength incremental flashes,” J. Opt. Soc. Am. 72, 565–570 (1982).
    [Crossref] [PubMed]
  43. S. K. Shevell, “Saturation in human cones,” Vision Res. 17, 427–434 (1977).
    [Crossref] [PubMed]
  44. S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
    [Crossref] [PubMed]
  45. A. Reeves, “Exchange thresholds for green tests,” Vision Res. 22, 961–966 (1982).
    [Crossref] [PubMed]
  46. A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time course of adaptation along the RG cardinal axis,” Color Res. Appl. 26 (suppl.), S43–S47 (2001).
    [Crossref]
  47. T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
    [Crossref] [PubMed]
  48. W. S. Stile, “Increment thresholds and the mechanisms of colour vision,” Doc. Ophthalmologica 3, 138–163 (1949).
    [Crossref]
  49. J. D. Mollon, P. G. Polden, “Proceedings: some proper-ties of the blue cone mechanism of the eye,” J. Physiol. 254, 1P–2P (1976).
  50. A. Shapiro, A. D. D’Antona, “Independent directions in color space delineated by contrast-induced phase lags,” J. Vision 3, A1 (2003).
  51. P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).
  52. J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

2003 (2)

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time-course of S-cone system adaptation to simple and complex fields,” Vision Res. 43, 1135–1147 (2003).
[Crossref] [PubMed]

A. Shapiro, A. D. D’Antona, “Independent directions in color space delineated by contrast-induced phase lags,” J. Vision 3, A1 (2003).

2001 (1)

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time course of adaptation along the RG cardinal axis,” Color Res. Appl. 26 (suppl.), S43–S47 (2001).
[Crossref]

2000 (3)

J. S. McLellan, R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vision Res. 40, 2449–2465 (2000).
[Crossref] [PubMed]

O. Rinner, K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref] [PubMed]

P. J. DeMarco, R. A. Hughes, T. J. Purkiss, “Increment and decrement detection on temporally modulated fields,” Vision Res. 40, 1907–1919 (2000).
[Crossref] [PubMed]

1998 (2)

D. C. Hood, “Lower-level visual processing and models of light adaptation,” Ann. Rev. Psychol. 49, 503–535 (1998).
[Crossref]

D. C. Hood, N. Graham, “Threshold fluctuations on temporally modulated backgrounds: a possible physiological explanation based upon a recent computational model,” Visual Neurosci. 15, 957–967 (1998).
[Crossref]

1997 (2)

D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
[Crossref] [PubMed]

L. Poot, H. P. Snippe, J. H. van Hateren, “Dynamics of adaptation at high luminances: adaptation is faster after luminance decrements than after luminance increments,” J. Opt. Soc. Am. A 14, 2499–2508 (1997).
[Crossref]

1996 (1)

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[Crossref] [PubMed]

1995 (1)

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[Crossref] [PubMed]

1993 (2)

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[Crossref] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[Crossref] [PubMed]

1992 (5)

J. Krauskopf, K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[Crossref] [PubMed]

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[Crossref]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[Crossref] [PubMed]

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[Crossref] [PubMed]

Q. Zaidi, A. Shapiro, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[Crossref] [PubMed]

1990 (3)

M. A. Finkelstein, M. Harrison, D. C. Hood, “Sites of sensitivity control within a long-wavelength cone pathway,” Vision Res. 30, 1145–1158 (1990).
[Crossref] [PubMed]

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[Crossref] [PubMed]

J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

1989 (1)

1987 (1)

M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[Crossref]

1986 (1)

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

1985 (1)

C. F. I. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref] [PubMed]

1984 (1)

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retinal Res. 3, 263–346 (1984).
[Crossref]

1983 (2)

W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23, 1423–1432 (1983).
[Crossref] [PubMed]

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

1982 (2)

1981 (2)

W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).

M. A. Finkelstein, D. C. Hood, “Cone system saturation: more than one stage of sensitivity loss,” Vision Res. 21, 319–328 (1981).
[Crossref] [PubMed]

1979 (5)

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

E. N. J. Pugh, J. D. Mollon, “A theory of the p1 and p3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

D. C. Hood, M. A. Finkelstein, “Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system,” J. Exp. Psychol. Hum. Percept. Perform. 5, 391–405 (1979).
[Crossref] [PubMed]

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

1978 (3)

W. S. Geisler, “Adaptation, afterimage and cone saturation,” Vision Res. 18, 279–289 (1978).
[Crossref]

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

1977 (2)

S. K. Shevell, “Saturation in human cones,” Vision Res. 17, 427–434 (1977).
[Crossref] [PubMed]

E. G. Augenstein, E. N. J. Pugh, “The dynamics of the π-1 colour mechanism: further evidence for two sites of adaptation,” J. Physiol. (London) 272, 247–281 (1977).

1976 (1)

J. D. Mollon, P. G. Polden, “Proceedings: some proper-ties of the blue cone mechanism of the eye,” J. Physiol. 254, 1P–2P (1976).

1975 (2)

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

T. Saito, Y. Fukada, “Research note: gain control mechanisms within the receptive field center of cat’s retinal ganglion cells,” Vision Res. 15, 1407–1410 (1975).
[Crossref] [PubMed]

1974 (1)

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

1963 (1)

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (N.Y.) 58, 541–550 (1963).

1959 (1)

1949 (1)

W. S. Stile, “Increment thresholds and the mechanisms of colour vision,” Doc. Ophthalmologica 3, 138–163 (1949).
[Crossref]

Augenstein, E. G.

E. G. Augenstein, E. N. J. Pugh, “The dynamics of the π-1 colour mechanism: further evidence for two sites of adaptation,” J. Physiol. (London) 272, 247–281 (1977).

Baker, H. D.

Baylor, D. A.

J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

Beere, J. L.

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time-course of S-cone system adaptation to simple and complex fields,” Vision Res. 43, 1135–1147 (2003).
[Crossref] [PubMed]

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time course of adaptation along the RG cardinal axis,” Color Res. Appl. 26 (suppl.), S43–S47 (2001).
[Crossref]

Benimoff, N. I.

M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[Crossref]

Boynton, R. M.

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (N.Y.) 58, 541–550 (1963).

P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).

Brown, A. M.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

Buckingham, E.

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

Chaparro, A.

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[Crossref] [PubMed]

Chase, V. M.

D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
[Crossref] [PubMed]

Chen, G.

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[Crossref] [PubMed]

Cole, G. R.

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[Crossref]

C. F. I. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref] [PubMed]

D’Antona, A. D.

A. Shapiro, A. D. D’Antona, “Independent directions in color space delineated by contrast-induced phase lags,” J. Vision 3, A1 (2003).

DeMarco, P. J.

P. J. DeMarco, R. A. Hughes, T. J. Purkiss, “Increment and decrement detection on temporally modulated fields,” Vision Res. 40, 1907–1919 (2000).
[Crossref] [PubMed]

Doran, M. D.

Enroth-Cugell, C.

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retinal Res. 3, 263–346 (1984).
[Crossref]

Eskew, R. T.

J. S. McLellan, R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vision Res. 40, 2449–2465 (2000).
[Crossref] [PubMed]

Finkelstein, M. A.

M. A. Finkelstein, M. Harrison, D. C. Hood, “Sites of sensitivity control within a long-wavelength cone pathway,” Vision Res. 30, 1145–1158 (1990).
[Crossref] [PubMed]

M. A. Finkelstein, D. C. Hood, “Cone system saturation: more than one stage of sensitivity loss,” Vision Res. 21, 319–328 (1981).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, “Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system,” J. Exp. Psychol. Hum. Percept. Perform. 5, 391–405 (1979).
[Crossref] [PubMed]

Fukada, Y.

T. Saito, Y. Fukada, “Research note: gain control mechanisms within the receptive field center of cat’s retinal ganglion cells,” Vision Res. 15, 1407–1410 (1975).
[Crossref] [PubMed]

Gegenfurtner, K.

J. Krauskopf, K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[Crossref] [PubMed]

Gegenfurtner, K. R.

O. Rinner, K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref] [PubMed]

Geisler, W. S.

W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23, 1423–1432 (1983).
[Crossref] [PubMed]

W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).

W. S. Geisler, “Adaptation, afterimage and cone saturation,” Vision Res. 18, 279–289 (1978).
[Crossref]

Graham, N.

D. C. Hood, N. Graham, “Threshold fluctuations on temporally modulated backgrounds: a possible physiological explanation based upon a recent computational model,” Visual Neurosci. 15, 957–967 (1998).
[Crossref]

D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
[Crossref] [PubMed]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[Crossref] [PubMed]

Greenstein, V.

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[Crossref] [PubMed]

Halevy, D.

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[Crossref] [PubMed]

Harrison, M.

M. A. Finkelstein, M. Harrison, D. C. Hood, “Sites of sensitivity control within a long-wavelength cone pathway,” Vision Res. 30, 1145–1158 (1990).
[Crossref] [PubMed]

Hayhoe, M.

M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[Crossref]

Hayhoe, M. M.

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[Crossref] [PubMed]

Hine, T.

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[Crossref]

Hood, D.

Q. Zaidi, A. Shapiro, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[Crossref] [PubMed]

Hood, D. C.

D. C. Hood, “Lower-level visual processing and models of light adaptation,” Ann. Rev. Psychol. 49, 503–535 (1998).
[Crossref]

D. C. Hood, N. Graham, “Threshold fluctuations on temporally modulated backgrounds: a possible physiological explanation based upon a recent computational model,” Visual Neurosci. 15, 957–967 (1998).
[Crossref]

D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
[Crossref] [PubMed]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[Crossref] [PubMed]

M. A. Finkelstein, M. Harrison, D. C. Hood, “Sites of sensitivity control within a long-wavelength cone pathway,” Vision Res. 30, 1145–1158 (1990).
[Crossref] [PubMed]

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[Crossref] [PubMed]

M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[Crossref]

M. A. Finkelstein, D. C. Hood, “Cone system saturation: more than one stage of sensitivity loss,” Vision Res. 21, 319–328 (1981).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, “Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system,” J. Exp. Psychol. Hum. Percept. Perform. 5, 391–405 (1979).
[Crossref] [PubMed]

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

Hughes, R. A.

P. J. DeMarco, R. A. Hughes, T. J. Purkiss, “Increment and decrement detection on temporally modulated fields,” Vision Res. 40, 1907–1919 (2000).
[Crossref] [PubMed]

Hurvich, L. M.

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

Ilves, T.

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

Jameson, D.

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

Kaiser, P. K.

P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).

King-Smith, P. E.

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

Koshel, R. J.

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[Crossref] [PubMed]

Krauskopf, J.

J. Krauskopf, K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

Kremers, J.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[Crossref] [PubMed]

Kronauer, R. E.

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[Crossref] [PubMed]

C. F. I. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

Lee, B. B.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[Crossref] [PubMed]

Levin, M. E.

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[Crossref] [PubMed]

Lutze, M.

Madsen, J. C.

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

Mandler, M. B.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

Maurer, E.

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

McLellan, J. S.

J. S. McLellan, R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vision Res. 40, 2449–2465 (2000).
[Crossref] [PubMed]

Meister, M.

J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

Miller, K. E.

Miller, N. D.

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (N.Y.) 58, 541–550 (1963).

Mollon, J. D.

E. N. J. Pugh, J. D. Mollon, “A theory of the p1 and p3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

J. D. Mollon, P. G. Polden, “Proceedings: some proper-ties of the blue cone mechanism of the eye,” J. Physiol. 254, 1P–2P (1976).

Nakano, Y.

Y. Nakano, “Color vision mathematics: a tutorial,” in Human Color Vision (Optical Society of America, Washington, D.C., 1996), App., Part III, pp. 544–562.

Nunn, B. J.

J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

Pokorny, J.

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[Crossref] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618–1623 (1989).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Polden, P. G.

J. D. Mollon, P. G. Polden, “Proceedings: some proper-ties of the blue cone mechanism of the eye,” J. Physiol. 254, 1P–2P (1976).

Poot, L.

Pugh, E. N.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

Pugh, E. N. J.

E. N. J. Pugh, J. D. Mollon, “A theory of the p1 and p3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

E. G. Augenstein, E. N. J. Pugh, “The dynamics of the π-1 colour mechanism: further evidence for two sites of adaptation,” J. Physiol. (London) 272, 247–281 (1977).

Purkiss, T. J.

P. J. DeMarco, R. A. Hughes, T. J. Purkiss, “Increment and decrement detection on temporally modulated fields,” Vision Res. 40, 1907–1919 (2000).
[Crossref] [PubMed]

Reeves, A.

Rinner, O.

O. Rinner, K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref] [PubMed]

Saito, T.

T. Saito, Y. Fukada, “Research note: gain control mechanisms within the receptive field center of cat’s retinal ganglion cells,” Vision Res. 15, 1407–1410 (1975).
[Crossref] [PubMed]

Schnapf, J. L.

J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

Shapiro, A.

A. Shapiro, A. D. D’Antona, “Independent directions in color space delineated by contrast-induced phase lags,” J. Vision 3, A1 (2003).

Q. Zaidi, A. Shapiro, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[Crossref] [PubMed]

Shapiro, A. G.

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time-course of S-cone system adaptation to simple and complex fields,” Vision Res. 43, 1135–1147 (2003).
[Crossref] [PubMed]

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time course of adaptation along the RG cardinal axis,” Color Res. Appl. 26 (suppl.), S43–S47 (2001).
[Crossref]

Shapley, R. M.

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retinal Res. 3, 263–346 (1984).
[Crossref]

Shevell, S. K.

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

S. K. Shevell, “Saturation in human cones,” Vision Res. 17, 427–434 (1977).
[Crossref] [PubMed]

Smith, V. C.

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[Crossref] [PubMed]

J. Pokorny, V. C. Smith, M. Lutze, “Heterochromatic modulation photometry,” J. Opt. Soc. Am. A 6, 1618–1623 (1989).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

Snippe, H. P.

Stile, W. S.

W. S. Stile, “Increment thresholds and the mechanisms of colour vision,” Doc. Ophthalmologica 3, 138–163 (1949).
[Crossref]

Stromeyer, C. F.

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[Crossref] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

Stromeyer, C. F. I.

C. F. I. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref] [PubMed]

Thornton, J. E.

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

van Hateren, J. H.

Varner, F. D.

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

von Wiegand, T. E.

D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
[Crossref] [PubMed]

Wandell, B.

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

Webb, J. R.

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

Williams, D. R.

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

Yeh, T.

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[Crossref] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[Crossref] [PubMed]

Zaidi, Q.

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time-course of S-cone system adaptation to simple and complex fields,” Vision Res. 43, 1135–1147 (2003).
[Crossref] [PubMed]

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time course of adaptation along the RG cardinal axis,” Color Res. Appl. 26 (suppl.), S43–S47 (2001).
[Crossref]

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[Crossref] [PubMed]

Q. Zaidi, A. Shapiro, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[Crossref] [PubMed]

Ann. Rev. Psychol. (1)

D. C. Hood, “Lower-level visual processing and models of light adaptation,” Ann. Rev. Psychol. 49, 503–535 (1998).
[Crossref]

Behav. Res. Methods Instrum. Comput. (1)

G. R. Cole, T. Hine, “Computation of cone contrasts for color vision research,” Behav. Res. Methods Instrum. Comput. 24, 22–27 (1992).
[Crossref]

Color Res. Appl. (1)

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time course of adaptation along the RG cardinal axis,” Color Res. Appl. 26 (suppl.), S43–S47 (2001).
[Crossref]

Doc. Ophthalmologica (1)

W. S. Stile, “Increment thresholds and the mechanisms of colour vision,” Doc. Ophthalmologica 3, 138–163 (1949).
[Crossref]

Illum. Eng. (N.Y.) (1)

R. M. Boynton, N. D. Miller, “Visual performance under conditions of transient adaptation,” Illum. Eng. (N.Y.) 58, 541–550 (1963).

J. Exp. Psychol. Hum. Percept. Perform. (1)

D. C. Hood, M. A. Finkelstein, “Comparison of changes in sensitivity and sensation: implications for the response-intensity function of the human photopic system,” J. Exp. Psychol. Hum. Percept. Perform. 5, 391–405 (1979).
[Crossref] [PubMed]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Physiol. (1)

J. D. Mollon, P. G. Polden, “Proceedings: some proper-ties of the blue cone mechanism of the eye,” J. Physiol. 254, 1P–2P (1976).

J. Physiol. (London) (3)

J. L. Schnapf, B. J. Nunn, M. Meister, D. A. Baylor, “Visual transduction in cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681–713 (1990).

W. S. Geisler, “Effects of bleaching and backgrounds on the flash response of the cone system,” J. Physiol. (London) 312, 413–434 (1981).

E. G. Augenstein, E. N. J. Pugh, “The dynamics of the π-1 colour mechanism: further evidence for two sites of adaptation,” J. Physiol. (London) 272, 247–281 (1977).

J. Vision (1)

A. Shapiro, A. D. D’Antona, “Independent directions in color space delineated by contrast-induced phase lags,” J. Vision 3, A1 (2003).

Proc. Natl. Acad. Sci. USA (1)

D. Jameson, L. M. Hurvich, F. D. Varner, “Receptoral and postreceptoral visual processes in recovery from chromatic adaptation,” Proc. Natl. Acad. Sci. USA 76, 3034–3038 (1979).
[Crossref] [PubMed]

Prog. Retinal Res. (1)

R. M. Shapley, C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” Prog. Retinal Res. 3, 263–346 (1984).
[Crossref]

Science (1)

J. E. Thornton, E. N. Pugh, “Red/green color opponency at detection threshold,” Science 219, 191–193 (1983).
[Crossref] [PubMed]

Vision Res. (31)

E. N. J. Pugh, J. D. Mollon, “A theory of the p1 and p3 color mechanisms of Stiles,” Vision Res. 19, 293–312 (1979).
[Crossref]

D. C. Hood, V. Greenstein, “Models of the normal and abnormal rod system,” Vision Res. 30, 51–68 (1990).
[Crossref] [PubMed]

P. E. King-Smith, J. R. Webb, “The use of photopic saturation in determining the fundamental spectral sensitivity curves,” Vision Res. 14, 421–429 (1974).
[Crossref] [PubMed]

S. K. Shevell, “Saturation in human cones,” Vision Res. 17, 427–434 (1977).
[Crossref] [PubMed]

S. K. Shevell, “The dual role of chromatic backgrounds in color perception,” Vision Res. 18, 1649–1661 (1978).
[Crossref] [PubMed]

A. Reeves, “Exchange thresholds for green tests,” Vision Res. 22, 961–966 (1982).
[Crossref] [PubMed]

T. Yeh, J. Pokorny, V. C. Smith, “Chromatic discrimination with variation in chromaticity and luminance: data and theory,” Vision Res. 33, 1835–1845 (1993).
[Crossref] [PubMed]

W. S. Geisler, “Mechanisms of visual sensitivity: backgrounds and early dark adaptation,” Vision Res. 23, 1423–1432 (1983).
[Crossref] [PubMed]

N. Graham, D. C. Hood, “Modeling the dynamics of light adaptation: the merging of two traditions,” Vision Res. 32, 1373–1393 (1992).
[Crossref] [PubMed]

O. Rinner, K. R. Gegenfurtner, “Time course of chromatic adaptation for color appearance and discrimination,” Vision Res. 40, 1813–1826 (2000).
[Crossref] [PubMed]

A. G. Shapiro, J. L. Beere, Q. Zaidi, “Time-course of S-cone system adaptation to simple and complex fields,” Vision Res. 43, 1135–1147 (2003).
[Crossref] [PubMed]

D. C. Hood, N. Graham, T. E. von Wiegand, V. M. Chase, “Probed-sinewave paradigm: a test of models of light-adaptation dynamics,” Vision Res. 37, 1177–1191 (1997).
[Crossref] [PubMed]

V. C. Smith, J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vision Res. 15, 161–171 (1975).
[Crossref] [PubMed]

J. Krauskopf, D. R. Williams, M. B. Mandler, A. M. Brown, “Higher order color mechanisms,” Vision Res. 26, 23–32 (1986).
[Crossref] [PubMed]

J. Krauskopf, K. Gegenfurtner, “Color discrimination and adaptation,” Vision Res. 32, 2165–2175 (1992).
[Crossref] [PubMed]

J. S. McLellan, R. T. Eskew, “ON and OFF S-cone pathways have different long-wave cone inputs,” Vision Res. 40, 2449–2465 (2000).
[Crossref] [PubMed]

Q. Zaidi, D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vision Res. 33, 1037–1051 (1993).
[Crossref] [PubMed]

C. F. I. Stromeyer, G. R. Cole, R. E. Kronauer, “Second-site adaptation in the red-green chromatic pathways,” Vision Res. 25, 219–237 (1985).
[Crossref] [PubMed]

M. M. Hayhoe, M. E. Levin, R. J. Koshel, “Subtractive processes in light adaptation,” Vision Res. 32, 323–333 (1992).
[Crossref] [PubMed]

M. Hayhoe, N. I. Benimoff, D. C. Hood, “The time-course of multiplicative and subtractive adaptation processes,” Vision Res. 27, 1981–1996 (1987).
[Crossref]

T. Yeh, B. B. Lee, J. Kremers, “The time course of adaptation in macaque retinal ganglion cells,” Vision Res. 36, 913–931 (1996).
[Crossref] [PubMed]

P. J. DeMarco, R. A. Hughes, T. J. Purkiss, “Increment and decrement detection on temporally modulated fields,” Vision Res. 40, 1907–1919 (2000).
[Crossref] [PubMed]

T. Saito, Y. Fukada, “Research note: gain control mechanisms within the receptive field center of cat’s retinal ganglion cells,” Vision Res. 15, 1407–1410 (1975).
[Crossref] [PubMed]

W. S. Geisler, “Adaptation, afterimage and cone saturation,” Vision Res. 18, 279–289 (1978).
[Crossref]

D. C. Hood, T. Ilves, E. Maurer, B. Wandell, E. Buckingham, “Human cone saturation as a function of ambient intensity: a test of models of shifts in the dynamic range,” Vision Res. 18, 983–993 (1978).
[Crossref] [PubMed]

M. A. Finkelstein, D. C. Hood, “Cone system saturation: more than one stage of sensitivity loss,” Vision Res. 21, 319–328 (1981).
[Crossref] [PubMed]

M. A. Finkelstein, M. Harrison, D. C. Hood, “Sites of sensitivity control within a long-wavelength cone pathway,” Vision Res. 30, 1145–1158 (1990).
[Crossref] [PubMed]

D. C. Hood, M. A. Finkelstein, E. Buckingham, “Psychophysical tests of models of the response function,” Vision Res. 19, 401–406 (1979).
[Crossref] [PubMed]

C. F. Stromeyer, R. E. Kronauer, J. C. Madsen, “Response saturation of short-wavelength cone pathways controlled by color-opponent mechanisms,” Vision Res. 19, 1025–1040 (1979).
[Crossref] [PubMed]

Q. Zaidi, A. Shapiro, D. Hood, “The effect of adaptation on the differential sensitivity of the S-cone color system,” Vision Res. 32, 1297–1318 (1992).
[Crossref] [PubMed]

A. Chaparro, C. F. Stromeyer, G. Chen, R. E. Kronauer, “Human cones appear to adapt to low light levels: measurements on the Red–Green detection mechanism,” Vision Res. 35, 3103–3118 (1995).
[Crossref] [PubMed]

Visual Neurosci. (1)

D. C. Hood, N. Graham, “Threshold fluctuations on temporally modulated backgrounds: a possible physiological explanation based upon a recent computational model,” Visual Neurosci. 15, 957–967 (1998).
[Crossref]

Other (2)

Y. Nakano, “Color vision mathematics: a tutorial,” in Human Color Vision (Optical Society of America, Washington, D.C., 1996), App., Part III, pp. 544–562.

P. K. Kaiser, R. M. Boynton, Human Color Vision (Optical Society of America, Washington, D.C., 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of flash and probe stimuli in CIE1931 space. For both the L–M- and S-cone cardinal axes, flash stimuli were presented as excursions from a white point (open circle; x=337; y=334). For the L–M axis, probe stimuli were 50 ms in duration and could extend in one of two directions from the flash chromaticity (as shown by the arrows). The L–M chromatic flash had an L-cone contrast of 15% and an M-cone contrast of 11%. For the S-cone axis, probe stimuli were 100 ms in duration and could extend in one of two directions from the flash chromaticity. The S-cone flash had an S-cone contrast of 18%.

Fig. 2
Fig. 2

Thresholds for reddish probes measured at different latencies relative to the onset of a reddish flash, for four observers. The abscissa represents the probe delay relative to the onset of the chromatic flash, and the ordinate is the probe threshold. Thresholds were measured for probes presented at seven latencies (10–1000 ms). The dashed horizontal lines represent steady-state thresholds for reddish and greenish probes, reflecting observers’ sensitivity to reddish or greenish direction probes when the probes are presented on a steady field whose chromaticity is equal to that achieved at each flash chromaticity (see Fig. 1).

Fig. 3
Fig. 3

Thresholds for probes measured at different latencies relative to the onset of a reddish and a greenish direction flash. Data are the mean of four observers. Error bars represent ±1 standard error of the mean (SEM).

Fig. 4
Fig. 4

(A) Depiction of the logarithmic function used to estimate the time course of adaptation for the fast and slow aspects of the decay functions. Solid line, a fit applied to the fast component (enclosed by solid oval); dashed line, a fit applied to the slow component (enclosed by the dashed oval). (B) and (C) Slope estimates obtained from the logarithmic fits. Note that a more negative estimated slope represents a faster transition to steady state.

Fig. 5
Fig. 5

Thresholds for bluish probes measured at different latencies relative to the onset of a bluish flash, for four observers. Thresholds were measured for probes presented at seven latencies (10–1000 ms). The dashed horizontal lines represent steady-state thresholds for bluish probes presented on a steady chromatic field.

Fig. 6
Fig. 6

Thresholds for probes measured at different latencies relative to the onset of a bluish and a yellowish direction flash. Data are the mean of four observers. Error bars represent ±1 SEM.

Fig. 7
Fig. 7

Slope estimates obtained from the logarithmic fits. Note that a more negative estimated slope represents a faster transition to steady state.

Fig. 8
Fig. 8

(A) Skeletal representation of the L–M opponent model used to model first- and second-site adaptation for the time course of adaptation along the L–M-cone axis. (B) Skeletal representation of the S-cone opponent model used to model first- and second-site adaptation for the time course of adaptation along the S-cone axis. First-site adaptation represents gain (sensitivity) changes that occur either within the photoreceptors themselves or anywhere proximal to second-order neurons. Second-site adaptation reflects any loss in sensitivity not accounted for by first-site effects. See Appendix A for a detailed description of the L–M opponent model.

Fig. 9
Fig. 9

Averaged threshold data for the L–M cone axis along with first- and second-site model predictions. Dashed curves, first-site predictions; solid curves, first-+second-site model predictions.

Fig. 10
Fig. 10

Averaged threshold data for the S-cone axis along with first- and second-site model predictions. Dashed curves, first-site predictions; solid curves, first-+second-site model predictions.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

L=KL380700FL(λ)p(λ)dλ,
C=Δ/
R(d)=Rmax(1-(1-r)exp(-d/τ)).
Y=a+b log(x).
GL=A0/A0+LJ
GM=A1/A1+MJ,
LO=LF*GL,
MO=MF*GM.
LMW=([GL*LW])-([GM*MW])=([A0/A0+LW*LW])-([A0/A0+MW*MW]),
LMF=([GL*(LW+LF)])-([GM*(MW+MF)])=([A0/A0+LF*(LW+LF)])-([A0/A0+MF*(MW+MF)]).
exp[(LMF)/τ].
R=ρϕ[1-exp(-ϕC)],

Metrics