Abstract

A planar photonic crystal that allows inherently gap-guided single-mode waveguides is proposed and discussed. This novel structure consists of a two-dimensional lattice of silicon rods embedded on a thin silica slab sandwiched between two silica claddings whose refractive indices are slightly lower than the index of the silica core. The physical parameters of the structure, i.e., rod radius and core thickness, are optimized to maximize the bandgap width for odd modes. Lossless guided modes inside the bandgap and below the claddings’ light cone are obtained by reducing the radius of a row of rods. The waveguide bandwidth can be increased by inserting a thin silicon dielectric waveguide instead of the row of rods. The proposed approach may overcome many of the common drawbacks in conventional holes-on-dielectric planar photonic crystal waveguides.

© 2003 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
    [CrossRef]
  4. J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  5. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
    [CrossRef] [PubMed]
  6. T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
    [CrossRef]
  7. V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999).
    [CrossRef]
  8. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
    [CrossRef]
  9. M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [CrossRef]
  10. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
    [CrossRef] [PubMed]
  11. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
    [CrossRef]
  12. D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
    [CrossRef]
  13. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  14. A. Chutinan, S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
    [CrossRef]
  15. S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  16. H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
    [CrossRef]
  17. T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
    [CrossRef]
  18. S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  19. W. T. Lau, S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
    [CrossRef]
  20. M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
    [CrossRef]

2002 (2)

W. T. Lau, S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

2001 (3)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

2000 (5)

A. Chutinan, S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

1999 (4)

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

1996 (2)

T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

1990 (1)

T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Alleman, A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Benisty, H.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

Beraud, A.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Brand, S.

T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Cassagne, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Chow, E.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Chutinan, A.

A. Chutinan, S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

de Dood, M. J. A.

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

de la Rue, R. M.

T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Doll, T.

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Fan, S.

W. T. Lau, S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Hou, H.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Houdré, R.

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

Joannnopoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson, J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001), http://www.opticsexpress.org .
[CrossRef] [PubMed]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Jouanin, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

Kanayama, T.

V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999).
[CrossRef]

Kominato, T.

T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
[CrossRef]

Krauss, T. F.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Labilloy, D.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

Lau, W. T.

W. T. Lau, S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[CrossRef]

Lin, S. Y.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Lonçar, M.

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Nedeljkovic, D.

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Noda, S.

A. Chutinan, S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Notomi, M.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

Oesterle, U.

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

Ohmori, Y.

T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
[CrossRef]

Okazaki, H.

T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
[CrossRef]

Pearsall, T. P.

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Poborchii, V. V.

V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999).
[CrossRef]

Polman, A.

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

Qiu, M.

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

Scherer, A.

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Shinya, A.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Smith, C. J. M.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

Snoeks, E.

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

Tada, T.

V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

van der Drift, E.

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

Vawter, G. A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

Vuçkovic, J.

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Weisbuch, C.

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

Wendt, J. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yasu, M.

T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
[CrossRef]

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

Zijlstra, T.

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

Zubrzycki, W.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

V. V. Poborchii, T. Tada, T. Kanayama, “A visible–near infrared range photonic crystal made up of Si nanopillars,” Appl. Phys. Lett. 75, 3276–3278 (1999).
[CrossRef]

M. Lonçar, D. Nedeljkovic, T. Doll, J. Vuçkovic, A. Scherer, T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

H. Benisty, D. Labilloy, C. Weisbuch, C. J. M. Smith, T. F. Krauss, D. Cassagne, A. Beraud, C. Jouanin, “Radiation losses of waveguide-based two-dimensional photoniccrystals: positive role of the substrate,” Appl. Phys. Lett. 76, 532–534 (2000).
[CrossRef]

W. T. Lau, S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into photonic crystal slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[CrossRef]

M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002).
[CrossRef]

Electron. Lett. (2)

T. Kominato, Y. Ohmori, H. Okazaki, M. Yasu, “Very low-loss GeO2-doped silica waveguides fabricated by flame hydrolysis deposition method,” Electron. Lett. 26, 327–328 (1990).
[CrossRef]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37, 293–295 (2001).
[CrossRef]

J. Vac. Sci. Technol. B (1)

T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, A. Polman, “Fabrication of two-dimensional photonic crystal waveguides for 1.5 µm in silicon by deep anisotropic dry etching,” J. Vac. Sci. Technol. B 17, 2734–2739 (1999).
[CrossRef]

Nature (2)

T. F. Krauss, R. M. de la Rue, S. Brand, “Two-dimensional photonic-bandgap structures operating at near infrared wavelengths,” Nature 383, 699–702 (1996).
[CrossRef]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, A. Alleman, “Three-dimensional control of light in a two-dimensional photonic crystal slab,” Nature 407, 983–986 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (4)

A. Chutinan, S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, J. D. Joannopoulos, “Linear waveguides in photonic crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdré, U. Oesterle, “Finely resolved transmission spectra and band structure of two-dimensional photonic crystals using emission from InAs quantum dots,” Phys. Rev. B 59, 1649–1652 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
[CrossRef]

Phys. Rev. Lett. (4)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, J. D. Joannnopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790 (1996).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, I. Yokohama, “Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Other (1)

J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the proposed planar PhC. A silica core of thickness h is patterned with a hexagonal lattice of silicon rods with radius r. The core is sandwiched between two silica claddings whose refractive indices are slightly lower than the index of the core silica. The overcladding is displaced upward to better show the core of the structure.

Fig. 2
Fig. 2

Gap–midgap ratio (%) of the proposed PhC for odd modes as a function of the radius of the rods (r) and the thickness of the core (h). A maximum band gap width of 16.56% is obtained for ropt=0.1663a and hopt=2.0238a.

Fig. 3
Fig. 3

Photonic band structure for odd modes of the proposed planar PhC with optimum parameters (ropt=0.1663a, hopt=2.0238a). The black region shows the claddings’ light cone; solid curves show the PhC odd modes.

Fig. 4
Fig. 4

Schematic of the linear defect proposed to create single-mode waveguides: (a) the radius of the rods in a row along the ΓK direction is decreased; (b) a row of rods is replaced by a strip silicon waveguide of width w.

Fig. 5
Fig. 5

Photonic band structure of a PhC waveguide created by reducing the radius of a row of rods (solid curves). Numbers near the curves stand for the value of rdef/a for each guided mode. The dashed line indicates a guided mode when a strip silicon waveguide with w=0.08a is embedded instead of the row of rods. Light cone and extended slab modes are shown as black and gray zones, respectively.

Fig. 6
Fig. 6

(a) Horizontal and (b) vertical field cross section of the guided mode for a decreased-radius waveguide with rdef=0.12a.

Fig. 7
Fig. 7

(a) Horizontal and (b) vertical field cross section of the guided mode for the strip silicon waveguide of width w=0.08a.

Tables (2)

Tables Icon

Table 1 Bandwidth of the Guided Modes for a Waveguide Created by Reducing the Radius of a Row of Rods along the ΓK Direction

Tables Icon

Table 2 Bandwidth of the Guided Modes (Lower and Upper) for a Waveguide Created by Inserting the Strip Silicon Waveguide of Width w=0.08a along the ΓK Direction

Metrics